6 research outputs found

    COL4A1 Mutations Cause Ocular Dysgenesis, Neuronal Localization Defects, and Myopathy in Mice and Walker-Warburg Syndrome in Humans

    Get PDF
    Muscle-eye-brain disease (MEB) and Walker Warburg Syndrome (WWS) belong to a spectrum of autosomal recessive diseases characterized by ocular dysgenesis, neuronal migration defects, and congenital muscular dystrophy. Until now, the pathophysiology of MEB/WWS has been attributed to alteration in dystroglycan post-translational modification. Here, we provide evidence that mutations in a gene coding for a major basement membrane protein, collagen IV alpha 1 (COL4A1), are a novel cause of MEB/WWS. Using a combination of histological, molecular, and biochemical approaches, we show that heterozygous Col4a1 mutant mice have ocular dysgenesis, neuronal localization defects, and myopathy characteristic of MEB/WWS. Importantly, we identified putative heterozygous mutations in COL4A1 in two MEB/WWS patients. Both mutations occur within conserved amino acids of the triple-helix-forming domain of the protein, and at least one mutation interferes with secretion of the mutant proteins, resulting instead in intracellular accumulation. Expression and posttranslational modification of dystroglycan is unaltered in Col4a1 mutant mice indicating that COL4A1 mutations represent a distinct pathogenic mechanism underlying MEB/WWS. These findings implicate a novel gene and a novel mechanism in the etiology of MEB/WWS and expand the clinical spectrum of COL4A1-associated disorders

    The effect of the timing of invasive management on cardiac function in patients with nste-acs, insights from the optima-2 randomized controlled trial

    No full text
    The timing of coronary angiography in patients with non-ST-elevation acute coronary syndrome (NSTE-ACS) remains a matter of debate. The relationship between the timing of invasive management and left ventricular function (LVF) is largely unknown. The An Immediate or Early Invasive Strategy in Non-ST-Elevation Acute Coronary Syndrome trial (OPTIMA-2) was a randomized controlled prospective open-label multicenter trial that randomized 249 NSTE-ACS patients to either an immediate (<3 h) invasive treatment strategy or an early strategy (12–24 h). Patients were pre-treated with a combination of aspirin, ticagrelor and fondaparinux. The aim of this prespecified sub-analysis was to assess (the recovery of) left ventricular function by analysing echocardiography data obtained <72 h after admission and at 30-day follow-up, for patients with a confirmed diagnosis of acute coronary syndrome. LVF was determined using ejection fraction (EF) and global longitudinal strain (GLS). Inter-observer variability was tested. No difference in the recovery of EF was found between an immediate and early strategy if the follow-up echocardiograms were compared to baseline: 2.5% (standard deviation (SD): 7.9) and 3.3% (SD: 8.5), p = 0.51, nor was there any difference in GLS recovery between the study groups: −0.8% (SD: 2.5) vs. −0.7% (SD 2.8) p = 0.82. If baseline and follow-up echocardiograms were compared, there was a similar but significant improvement in both EF and GLS in both separate study groups. An immediate invasive strategy in NSTE-ACS patients did not result in an improved left ventricular EF or GLS recovery compared with an early strategy
    corecore