180 research outputs found

    Assimilating SAR-derived water level data into a hydraulic model: a case study

    Get PDF
    Satellite-based active microwave sensors not only provide synoptic overviews of flooded areas, but also offer an effective way to estimate spatially distributed river water levels. If rapidly produced and processed, these data can be used for updating hydraulic models in near real-time. The usefulness of such approaches with real event data sets provided by currently existing sensors has yet to be demonstrated. In this case study, a Particle Filter-based assimilation scheme is used to integrate ERS-2 SAR and ENVISAT ASAR-derived water level data into a one-dimensional (1-D) hydraulic model of the Alzette River. Two variants of the Particle Filter assimilation scheme are proposed with a global and local particle weighting procedure. The first option finds the best water stage line across all cross sections, while the second option finds the best solution at individual cross sections. The variant that is to be preferred depends on the level of confidence that is attributed to the observations or to the model. The results show that the Particle Filter-based assimilation of remote sensing-derived water elevation data provides a significant reduction in the uncertainty at the analysis step. Moreover, it is shown that the periodical updating of hydraulic models through the proposed assimilation scheme leads to an improvement of model predictions over several time steps. However, the performance of the assimilation depends on the skill of the hydraulic model and the quality of the observation data

    Towards the sequential assimilation of SAR-derived water stages into hydraulic models using the Particle Filter : proof of concept

    Get PDF
    With the onset of new satellite radar constellations (e.g. Sentinel-1) and advances in computational science (e.g. grid computing) enabling the supply and processing of multimission satellite data at a temporal frequency that is compatible with real-time flood forecasting requirements, this study presents a new concept for the sequential assimilation of Synthetic Aperture Radar (SAR)-derived water stages into coupled hydrologic-hydraulic models. The proposed methodology consists of adjusting storages and fluxes simulated by a coupled hydrologic-hydraulic model using a Particle Filterbased data assimilation scheme. Synthetic observations of water levels, representing satellite measurements, are assimilated into the coupled model in order to investigate the performance of the proposed assimilation scheme as a function of both accuracy and frequency of water level observations. The use of the Particle Filter provides flexibility regarding the form of the probability densities of both model simulations and remote sensing observations. We illustrate the potential of the proposed methodology using a twin experiment over a widely studied river reach located in the Grand-Duchy of Luxembourg. The study demonstrates that the Particle Filter algorithm leads to significant uncertainty reduction of water level and discharge at the time step of assimilation. However, updating the storages of the model only improves the model forecast over a very short time horizon. A more effective way of updating thus consists in adjusting both states and inputs. The proposed methodology, which consists in updating the biased forcing of the hydraulic model using information on model errors that is inferred from satellite observations, enables persistent model improvement. The present schedule of satellite radar missions is such that it is likely that there will be continuity for SAR-based operational water management services. This research contributes to evolve reactive flood management into systematic or quasi-systematic SAR-based flood monitoring services

    Sentinel-1 detects firn aquifers in the Greenland ice sheet

    Get PDF
    Firn aquifers in Greenland store liquid water within the upper ice sheet and impact the hydrological system. Their location and area have been estimated with airborne radar sounder surveys (Operation IceBridge, OIB). However, the OIB coverage is limited to narrow flight lines, offering an incomplete view. Here, we show the ability of satellite radar measurements from Sentinel-1 to map firn aquifers across all of Greenland at 1 km(2) resolution. The detection of aquifers relies on a delay in the freezing of meltwater within the firn above the water table, causing a distinctive pattern in the radar backscatter. The Sentinel-1 aquifer locations are in very good agreement with those detected along the OIB flight lines (Cohen's kappa = 0.84). The total aquifer area is estimated at 54,800 km(2). With continuity of Sentinel-1 ensured until 2030, our study lays a foundation for monitoring the future response of firn aquifers to climate change

    Land Boundary Conditions for the Goddard Earth Observing System Model Version 5 (GEOS-5) Climate Modeling System: Recent Updates and Data File Descriptions

    Get PDF
    The Earths land surface boundary conditions in the Goddard Earth Observing System version 5 (GEOS-5) modeling system were updated using recent high spatial and temporal resolution global data products. The updates include: (i) construction of a global 10-arcsec land-ocean lakes-ice mask; (ii) incorporation of a 10-arcsec Globcover 2009 land cover dataset; (iii) implementation of Level 12 Pfafstetter hydrologic catchments; (iv) use of hybridized SRTM global topography data; (v) construction of the HWSDv1.21-STATSGO2 merged global 30 arc second soil mineral and carbon data in conjunction with a highly-refined soil classification system; (vi) production of diffuse visible and near-infrared 8-day MODIS albedo climatologies at 30-arcsec from the period 2001-2011; and (vii) production of the GEOLAND2 and MODIS merged 8-day LAI climatology at 30-arcsec for GEOS-5. The global data sets were preprocessed and used to construct global raster data files for the software (mkCatchParam) that computes parameters on catchment-tiles for various atmospheric grids. The updates also include a few bug fixes in mkCatchParam, as well as changes (improvements in algorithms, etc.) to mkCatchParam that allow it to produce tile-space parameters efficiently for high resolution AGCM grids. The update process also includes the construction of data files describing the vegetation type fractions, soil background albedo, nitrogen deposition and mean annual 2m air temperature to be used with the future Catchment CN model and the global stream channel network to be used with the future global runoff routing model. This report provides detailed descriptions of the data production process and data file format of each updated data set

    Potential soil moisture products from the aquarius radiometer and scatterometer using an observing system simulation experiment

    Get PDF
    Using an observing system simulation experiment (OSSE), we investigate the potential soil moisture retrieval capability of the National Aeronautics and Space Administration (NASA) Aquarius radiometer (L-band 1.413 GHz) and scatterometer (L-band, 1.260 GHz). We estimate potential errors in soil moisture retrievals and identify the sources that could cause those errors. The OSSE system includes (i) a land surface model in the NASA Land Information System, (ii) a radiative transfer and backscatter model, (iii) a realistic orbital sampling model, and (iv) an inverse soil moisture retrieval model. We execute the OSSE over a 1000 × 2200 km2 region in the central United States, including the Red and Arkansas river basins. Spatial distributions of soil moisture retrieved from the radiometer and scatterometer are close to the synthetic truth. High root mean square errors (RMSEs) of radiometer retrievals are found over the heavily vegetated regions, while large RMSEs of scatterometer retrievals are scattered over the entire domain. The temporal variations of soil moisture are realistically captured over a sparely vegetated region with correlations 0.98 and 0.63, and RMSEs 1.28% and 8.23% vol/vol for radiometer and scatterometer, respectively. Over the densely vegetated region, soil moisture exhibits larger temporal variation than the truth, leading to correlation 0.70 and 0.67, respectively, and RMSEs 9.49% and 6.09% vol/vol respectively. The domain-averaged correlations and RMSEs suggest that radiometer is more accurate than scatterometer in retrieving soil moisture. The analysis also demonstrates that the accuracy of the retrieved soil moisture is affected by vegetation coverage and spatial aggregation

    Onecut-dependent Nkx6.2 transcription factor expression is required for proper formation and activity of spinal locomotor circuits.

    Get PDF
    In the developing spinal cord, Onecut transcription factors control the diversification of motor neurons into distinct neuronal subsets by ensuring the maintenance of Isl1 expression during differentiation. However, other genes downstream of the Onecut proteins and involved in motor neuron diversification have remained unidentified. In the present study, we generated conditional mutant embryos carrying specific inactivation of Onecut genes in the developing motor neurons, performed RNA-sequencing to identify factors downstream of Onecut proteins in this neuron population, and employed additional transgenic mouse models to assess the role of one specific Onecut-downstream target, the transcription factor Nkx6.2. Nkx6.2 expression was up-regulated in Onecut-deficient motor neurons, but strongly downregulated in Onecut-deficient V2a interneurons, indicating an opposite regulation of Nkx6.2 by Onecut factors in distinct spinal neuron populations. Nkx6.2-null embryos, neonates and adult mice exhibited alterations of locomotor pattern and spinal locomotor network activity, likely resulting from defective survival of a subset of limb-innervating motor neurons and abnormal migration of V2a interneurons. Taken together, our results indicate that Nkx6.2 regulates the development of spinal neuronal populations and the formation of the spinal locomotor circuits downstream of the Onecut transcription factors

    Verification of the SMAP Level-4 Soil Moisture Analysis Using Rainfall Observations in Australia

    Get PDF
    Global, 3-hourly, 9-km resolution soil moisture estimates are available with a mean latency of ~2.5 days from the NASA Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product. These estimates are based on the assimilation of SMAP radiometer brightness temperature (Tb) observations into the NASA Catchment land surface model using a spatially distributed ensemble Kalman filter. Routine monitoring of the L4_SM system's assimilation diagnostics revealed occasionally large observation-minus-forecast Tb differences across eastern central Australia that resulted in large analysis increments (or adjustments) of the model forecast soil moisture. Because this region lacks in situ soil moisture measurements, we developed an alternative approach to assess the veracity of the soil moisture analysis increments in the L4_SM system. Using regional gauge-based precipitation data, we demonstrate that the L4_SM soil moisture increments are correlated with errors in the L4_SM precipitation forcing, suggesting that the SMAP Tb observations contribute valuable information to the L4_SM soil moisture estimates

    Nomenclature for renal replacement therapy and blood purification techniques in critically ill patients: practical applications

    Get PDF
    This article reports the conclusions of the second part of a consensus expert conference on the nomenclature of renal replacement therapy (RRT) techniques currently utilized to manage acute kidney injury and other organ dysfunction syndromes in critically ill patients. A multidisciplinary approach was taken to achieve harmonization of definitions, components, techniques, and operations of the extracorporeal therapies. The article describes the RRT techniques in detail with the relevant technology, procedures, and phases of treatment and key aspects of volume management/fluid balance in critically ill patients. In addition, the article describes recent developments in other extracorporeal therapies, including therapeutic plasma exchange, multiple organ support therapy, liver support, lung support, and blood purification in sepsis. This is a consensus report on nomenclature harmonization in extracorporeal blood purification therapies, such as hemofiltration, plasma exchange, multiple organ support therapies, and blood purification in sepsis

    Global Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using Assimilation Diagnostics

    Get PDF
    The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with ~2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of ~0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under ~3 K), the soil moisture increments (under ~0.01 cu.m/cu.m), and the surface soil temperature increments (under ~1 K). Typical instantaneous values are ~6 K for O-F residuals, ~0.01 (~0.003) cu.m/cu.m for surface (root-zone) soil moisture increments, and ~0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing

    Human physiologically based pharmacokinetic model for ACE inhibitors: ramipril and ramiprilat

    Get PDF
    BACKGROUND: The angiotensin-converting enzyme (ACE) inhibitors have complicated and poorly characterized pharmacokinetics. There are two binding sites per ACE (high affinity "C", lower affinity "N") that have sub-nanomolar affinities and dissociation rates of hours. Most inhibitors are given orally in a prodrug form that is systemically converted to the active form. This paper describes the first human physiologically based pharmacokinetic (PBPK) model of this drug class. METHODS: The model was applied to the experimental data of van Griensven et. al for the pharmacokinetics of ramiprilat and its prodrug ramipril. It describes the time course of the inhibition of the N and C ACE sites in plasma and the different tissues. The model includes: 1) two independent ACE binding sites; 2) non-equilibrium time dependent binding; 3) liver and kidney ramipril intracellular uptake, conversion to ramiprilat and extrusion from the cell; 4) intestinal ramipril absorption. The experimental in vitro ramiprilat/ACE binding kinetics at 4°C and 300 mM NaCl were assumed for most of the PBPK calculations. The model was incorporated into the freely distributed PBPK program PKQuest. RESULTS: The PBPK model provides an accurate description of the individual variation of the plasma ramipril and ramiprilat and the ramiprilat renal clearance following IV ramiprilat and IV and oral ramipril. Summary of model features: Less than 2% of total body ACE is in plasma; 35% of the oral dose is absorbed; 75% of the ramipril metabolism is hepatic and 25% of this is converted to systemic ramiprilat; 100% of renal ramipril metabolism is converted to systemic ramiprilat. The inhibition was long lasting, with 80% of the C site and 33% of the N site inhibited 24 hours following a 2.5 mg oral ramipril dose. The plasma ACE inhibition determined by the standard assay is significantly less than the true in vivo inhibition because of assay dilution. CONCLUSION: If the in vitro plasma binding kinetics of the ACE inhibitor for the two binding sites are known, a unique PBPK model description of the Griensven et. al. experimental data can be obtained
    • …
    corecore