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Abstract     34 

The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product 35 

provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 36 

cm) soil moisture and related land surface variables from 31 March 2015 to present with ~2.5-37 

day latency.  The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature 38 

(Tb) observations into the Catchment land surface model.  This study describes the spatially 39 

distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and 40 

the soil moisture and temperature analysis increments.  Owing to the climatological rescaling of 41 

the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean 42 

values of ~0.37 K for the O-F Tb residuals and practically zero for the soil moisture and 43 

temperature increments.  There are, however, modest regional (absolute) biases in the O-F 44 

residuals (under ~3 K), the soil moisture increments (under ~0.01 m3 m-3), and the surface soil 45 

temperature increments (under ~1 K).  Typical instantaneous values are ~6 K for O-F residuals, 46 

~0.01 (~0.003) m3 m-3 for surface (root-zone) soil moisture increments, and ~0.6 K for surface 47 

soil temperature increments.  The O-F diagnostics indicate that the actual errors in the system are 48 

overestimated in deserts and densely vegetated regions and underestimated in agricultural 49 

regions and transition zones between dry and wet climates.  The O-F auto-correlations suggest 50 

that the SMAP observations are used efficiently in western North America, the Sahel, and 51 

Australia, but not in many forested regions and the high northern latitudes.  A case study in 52 

Australia demonstrates that assimilating SMAP observations successfully corrects short-term 53 

errors in the L4_SM rainfall forcing.  54 

55 
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1. Introduction     56 

Soil moisture plays an important role in the water, energy and carbon cycles (e.g., Seneviratne et 57 

al. 2010) and is considered an essential climate variable by the World Meteorological 58 

Organization (WMO 2006).  The radiometer instrument onboard the NASA Soil Moisture Active 59 

Passive (SMAP) satellite mission (Entekhabi et al. 2010; Piepmeier et al. 2017) observes the L-60 

band (1.4 GHz) microwave radiation emitted from the Earth’s surface.  Over land, the observed 61 

radiances (or brightness temperatures; or Tbs) are sensitive to the moisture in the top few 62 

centimeters of the soil, provided the overlying vegetation is not too dense (Jackson and 63 

Schmugge 1991; Entekhabi et al. 2014).  This sensitivity is exploited in the SMAP Level-4 Soil 64 

Moisture (L4_SM) algorithm to obtain estimates of surface (0-5 cm) and root-zone (0-100 cm) 65 

soil moisture (Reichle et al. 2014b, 2017b).  Specifically, the ensemble-based L4_SM algorithm 66 

assimilates the SMAP Tb observations into the NASA Catchment land surface model (Koster et 67 

al. 2000), and the resulting L4_SM product consists of 3-hourly, 9-km resolution, global 68 

estimates of soil moisture and related land surface variables with complete coverage.   These 69 

estimates are available from 31 March 2015 to present with a mean latency of ~2.5 days from the 70 

time of the SMAP observations.   71 

 72 

Reichle et al. (2017b) validated the L4_SM soil moisture estimates against in situ measurements 73 

from SMAP core validation sites, which provide spatially averaged soil moisture measurements 74 

(at the grid-cell scale of the model and of the satellite estimates) for about a dozen distinct 75 

watersheds.  They determined that the unbiased RMSE (ubRMSE, or standard deviation of the 76 

error) for L4_SM surface (root-zone) soil moisture estimates is 0.038 m3 m-3 (0.030 m3 m-3) at 77 

the 9-km scale and 0.035 m3 m-3 (0.026 m3 m-3) at the 36-km scale.  The L4_SM product thus 78 
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meets its soil moisture accuracy requirement, which was specified prior to launch as an ubRMSE 79 

of 0.04 m3 m-3 or better (excluding regions of snow and ice, frozen ground, mountainous 80 

topography, open water, urban areas, and vegetation with water content greater than 5 kg m-2).  81 

Moreover, the L4_SM estimates improve (significantly at the 5% level for surface soil moisture) 82 

over model-only estimates, which do not benefit from the assimilation of SMAP Tb observations 83 

and have a 9-km surface (root-zone) ubRMSE of 0.042 m3 m-3 (0.032 m3 m-3) (Reichle et al. 84 

2017b).  Furthermore, Reichle et al. (2017b) corroborated these results with other metrics, 85 

including time series correlations, and through validation against point-scale in situ 86 

measurements from ~400 sparse network sites, which represent a greater variety of climate and 87 

land cover conditions.  Moreover, Crow et al. (2017) demonstrated for the south-central US that 88 

the assimilation-based L4_SM soil moisture estimates have significantly improved utility for 89 

forecasting the streamflow response to future rainfall events (relative to that of soil moisture 90 

retrievals from L-band and higher-frequency Tb observations). 91 

 92 

Validation versus in situ measurements is an important step in the assessment of any data 93 

product that is based on satellite measurements and numerical modeling.  For soil moisture, 94 

however, the available in situ measurements are limited to a relatively small number of locations 95 

(compared to the ~1.6 million land grid cells of the L4_SM product) and do not fully represent 96 

the tremendous variety of land cover, soil, and climate conditions encountered across the global 97 

land area.  It is therefore important to supplement the in situ validation of the L4_SM product 98 

with additional assessments that provide a more global perspective.  The key objective of the 99 

present paper is to offer this global evaluation perspective for the L4_SM product.  This is 100 

accomplished by investigating a variety of this product’s data assimilation diagnostics, including 101 



 5 

statistics of the observation-minus-forecast (O-F) Tb residuals, the observation-minus-analysis 102 

(O-A) Tb residuals, and the analysis-minus-forecast soil moisture differences (or increments).  103 

These diagnostics provide important information about the internal consistency of the 104 

assimilation system and the impact of the assimilated observations (Gelb 1974).  Perhaps most 105 

importantly, the assimilation diagnostics are available wherever and whenever SMAP 106 

observations are assimilated and therefore have a much greater coverage in space and time than 107 

in situ soil moisture measurements. 108 

 109 

There is a long history of using assimilation diagnostics to assess the performance of 110 

atmospheric assimilation systems (Hollingsworth and Lönnberg 1989; Daley 1992; Desroziers et 111 

al. 2005; Todling 2013).  Assimilation diagnostics have also been used extensively in land data 112 

assimilation.  For example, O-F residuals were used to assess whether the assumed error 113 

characteristics are consistent with actual errors (e.g., Reichle et al. 2002a; De Lannoy and 114 

Reichle 2016a,b), construct adaptive filtering approaches (Crow and Reichle 2008; Reichle et al. 115 

2008), tune the input error parameters (Crow and van den Berg 2010), and dynamically estimate 116 

and correct for bias (Draper et al. 2015).  Furthermore, an investigation of the analysis 117 

increments demonstrated the progress made in revising the soil moisture analysis of the 118 

Integrated Forecasting System at the European Centre for Medium-Range Weather Forecasts 119 

(Drusch et al. 2009; de Rosnay et al. 2013).   120 

 121 

This paper is organized as follows.  Following a brief overview of the L4_SM system and data 122 

product (section 2a), we describe the ensemble-based data assimilation algorithm (section 2b) 123 

and assimilation diagnostics (section 2c).  Thereafter, our results address the global climatology 124 
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of the L4_SM soil moisture estimates (section 3a) and illustrate the L4_SM analysis with a case 125 

study in Australia (section 3b).   Next, we investigate the observation counts (section 3c), the O-126 

F Tb residuals (section 3d), and the soil moisture and temperature increments (section 3e).  A 127 

summary and conclusions are provided in section 4. 128 

 129 

 130 

 131 

 132 

 133 

 134 

 135 

 136 

 137 

138 
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2. L4_SM Data Product and Algorithm       139 

A short overview of the Version 2 L4_SM product and algorithm is provided in Reichle et al. 140 

(2017b).  In this section, we briefly summarize the key aspects of the L4_SM modeling system 141 

and data product following their text.  Thereafter, we provide a more detailed discussion than 142 

Reichle et al. (2017b) of the L4_SM analysis and assimilation diagnostics.  This more detailed 143 

discussion is adapted from Reichle et al. (2014b) and De Lannoy and Reichle (2016a,b). 144 

 145 

a. Overview  146 

The L4_SM algorithm, shown schematically in Figure 1 of Reichle et al. (2017b), is a 147 

customized version of the ensemble-based land data assimilation component of the Goddard 148 

Earth Observing System, version 5 (GEOS-5), modeling and assimilation system.  This 149 

component is built around the Catchment land surface model (hereinafter “Catchment model”; 150 

Koster et al. 2000; Ducharne et al. 2000).  Besides the surface meteorological forcing data (see 151 

below), the key drivers of the L4_SM system are the 36-km resolution SMAP Level-1C Tb 152 

observations (Chan et al. 2016).  The assimilated SMAP observations include horizontal-153 

polarization (H-pol) and vertical-polarization (V-pol) Tbs from ascending and descending half-154 

orbits (after first averaging over fore- and aft-looking Tbs).  These observations are merged 155 

every three hours with the model estimates in a soil moisture and temperature analysis that uses a 156 

spatially distributed ensemble Kalman filter (EnKF; section 2b).   157 

 158 

The Catchment model used in the L4_SM algorithm includes an explicit treatment of the spatial 159 

variation of soil water and water table depth within each 9-km grid cell based on the statistics of 160 

the watershed topography.  Furthermore, the snow pack is simulated in a three-layer snow model 161 
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component that tracks the evolution of the snow water equivalent, snow depth, and snow heat 162 

content (Stieglitz et al. 2001).  The surface meteorological forcing data used in the L4_SM 163 

algorithm are from the GEOS-5 operational forward-processing (FP) system at 0.25°×0.3125° 164 

(latitude × longitude) resolution (Lucchesi 2013a).  The GEOS-5 precipitation data are corrected 165 

using daily, gauge-based precipitation observations from the NOAA Climate Prediction Center 166 

Unified (CPCU) product (Reichle and Liu 2014; Reichle et al. 2017b).  These precipitation 167 

corrections are applied globally except in Africa, where no corrections are applied, and in the 168 

high latitudes, where corrections are linearly tapered between 42.5° and 62.5° latitude (in both 169 

Hemispheres) and no corrections are applied poleward of 62.5° latitude.  The Catchment model 170 

is supplemented with a zero-order “tau-omega” radiative transfer model (De Lannoy et al. 2013, 171 

2014) that converts the Catchment model soil moisture and temperature estimates into estimates 172 

of L-band Tbs, which are required for the radiance-based L4_SM soil moisture analysis.  See 173 

Reichle et al. (2017b) and references therein for details about the Catchment and radiative 174 

transfer model configuration, parameters, and forcing data.  175 

 176 

The L4_SM data are generated and distributed on the global, cylindrical, 9-km Equal-Area 177 

Scalable Earth, version 2 (EASEv2), grid (Brodzik et al. 2012).  The L4_SM outputs include soil 178 

moisture estimates for the “surface” (0-5 cm), “root-zone” (0-100 cm) and “profile” (0 cm to 179 

depth of bedrock) layers, along with a large number of related land surface variables, including 180 

surface (skin) temperature, soil temperature (in 6 layers down to ~13 m depth), snow mass, land 181 

surface fluxes, surface meteorological forcing data, assimilation diagnostics, land model 182 

parameters, and error estimates for soil moisture and surface temperature (Reichle et al. 2015a).  183 

The L4_SM surface (layer-1) soil temperature estimates are for the 0-10 cm layer except for 184 
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tropical (broadleaf evergreen) forests, where the surface soil temperature is for the 5-15 cm layer.  185 

The layer thickness associated with the overlying land skin temperature is thus negligible except 186 

for tropical forests, where the L4_SM skin temperature represents the average temperature of the 187 

canopy and the 0-5 cm soil layer.   188 

 189 

In this paper we use L4_SM Version 2 data (Science Version ID: Vv2030) for the 2-year period 190 

from April 2015 to March 2017.  Specifically, we use 3-hourly, instantaneous “forecast” and 191 

“analysis” soil moisture and temperature fields along with the corresponding Tb observations, 192 

forecasts, analysis, and error estimates from the “analysis update” files (Reichle et al. 2016a).   193 

We further use surface soil moisture, root-zone soil moisture, snow mass and precipitation 194 

estimates from the 3-hourly time-average “geophysical” files (Reichle et al. 2016b).  Note that 195 

the latter files also provide many other land surface fields.  Finally, time-invariant land model 196 

parameters (including soil porosity and wilting point) are available in the “land-model-constants” 197 

file (Reichle et al. 2016c).  See Reichle et al. (2015a) for additional details about data product 198 

specifications. 199 

 200 

 201 

b. Assimilation algorithm 202 

The L4_SM algorithm is built on the EnKF – a Monte-Carlo variant of the Kalman filter 203 

(Evensen 2003).  The idea behind the EnKF is that a small ensemble of model trajectories 204 

captures the relevant parts of the model forecast error structure.  Each member of the ensemble 205 

experiences perturbed instances of the surface meteorological forcing fields (representing errors 206 

in the forcing data) and/or randomly generated noise that is added to the model parameters and 207 
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prognostic variables (representing errors in model physics and parameters).  The error covariance 208 

matrices that are required for the filter update can then be diagnosed from the spread of the 209 

ensemble at the update time.  Its relative ease of implementation made the EnKF a popular 210 

choice for land data assimilation (Reichle et al. 2002a,b; Andreadis and Lettenmaier 2006; Pan 211 

and Wood 2006; Zhou et al. 2006; Durand and Margulis 2008; Hendricks Franssen et al. 2008; 212 

Kumar et al. 2008; Lahoz and De Lannoy 2014; Carrera et al. 2015; Reichle et al. 2014a; Kurtz 213 

et al. 2016).   214 

 215 

The EnKF works sequentially by performing in turn a model forecast and a filter update.  Its 216 

implementation for the L4_SM algorithm is shown schematically in Figure 1 of De Lannoy and 217 

Reichle (2016b), except that – for the L4_SM system discussed here – the model is on the 9-km 218 

grid and the assimilated SMAP observations are only available for a single, 40° incidence angle.  219 

Formally, the forecast step using the land surface model f() can be written as 220 

 221 

  xt  
j− = f( xt-1 

j+, wt  
j),       (1) 222 

 223 

where xt 
j− and xt-1 

j+ are the forecast (denoted with – ) and analysis (denoted with +) state vectors 224 

at times t and t-1, respectively, of the j-th ensemble member.  The model error (or perturbation 225 

vector) is denoted with wt 
j.  Each ensemble member represents a particular realization of the 226 

possible model trajectories with perturbations in model prognostic and forcing variables.  The 227 

EnKF state vector is at 9-km resolution and consists of the Catchment model prognostic 228 

variables for soil moisture (surface excess, root-zone excess, and catchment deficit), skin 229 
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temperature, and surface (layer-1) soil heat content.  The latter is the Catchment model 230 

prognostic variable from which the surface soil temperature is diagnosed. 231 

 232 

With the observations available at time t, the state vector of each ensemble member is updated to 233 

new values.  To this end, the filter update produces increments Δxt 
j at time t that can be written 234 

as 235 

 236 

  Δxt 
j = Kt ( yt 

j – h(xt 
j−) ),      (2) 237 

 238 

where yt 
j denotes the (suitably perturbed) vector of Tb observations (Burgers et al. 1998) and 239 

h() is the observation operator that converts the 9-km soil moisture and temperature state 240 

estimates into model estimates of Tb at the coarser resolution of the SMAP observations.  The 241 

analyzed state vector is obtained as xt 
j+ = xt 

j− + Δxt 
j.  As expressed in equation (2), the Kalman 242 

gain matrix Kt maps the coarser-resolution observational information, expressed in the O-F 243 

residuals (i.e., yt 
j – h(xt 

j−)), onto the model state increments Δxt 
j at 9-km resolution.  The 244 

Kalman gain is given by  245 

 246 

   Kt = Cov( xt
−, h(xt

−) ) [ Cov( h(xt
−), h(xt

−) ) + Rt ] 
–1 ,  (3) 247 

 248 

where the forecast error (cross-)covariances Cov() are diagnosed from the ensemble, and Rt is 249 

the observation error covariance (including contributions from instrument errors and errors of 250 

representativeness).  Simply put, the Kalman gain represents the relative weights given to the 251 

model forecast and the observations based on their respective uncertainties and based on the 252 
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modeled error correlations between different elements of the state vector and the corresponding 253 

Tbs.  Finally, the EnKF state estimate is given by the ensemble mean, and the reduction of the 254 

uncertainty resulting from the analysis update is reflected in the reduction of the ensemble 255 

spread.  256 

 257 

The EnKF updates in the L4_SM algorithm are spatially distributed in the sense that all 258 

observations within a radius of 1.25° impact the analysis at a given 9-km grid cell (De Lannoy et 259 

al. 2016b; their section 3.1).  The weight of an O-F residual towards the soil moisture 260 

(temperature) increments at a given 9-km grid cell is proportional to the modeled error 261 

correlations between the Tb at the observation location and the soil moisture (temperature) at the 262 

location of the increment (equation 3).  Since this error correlation typically decays with 263 

increasing distance of the observation from the location of the increment, its sample-based 264 

estimate becomes noisier with increasing distance, which is addressed through a distance-based 265 

covariance localization approach using a Gaspari-Cohn function (Gaspari and Cohn 1999; De 266 

Lannoy and Reichle 2016a) with the above-mentioned compact support radius of 1.25°.  The 267 

L4_SM system uses 24 ensemble members.  The perturbation parameters for the model forcing 268 

and prognostic variables match those of De Lannoy and Reichle (2016a; their Table 2) except 269 

that the spatial correlation scale for the perturbations of the model prognostic variables is set to 270 

0.3° (instead of 0.5°) in the L4_SM system.  The observation error standard deviation is set to 4 271 

K, which includes ~1.3 K instrument error and ~3.8 K representativeness error (that is, error in 272 

the radiative transfer model and remapping associated with the observation operator h()) 273 

(Reichle et al. 2017b).  274 

 275 
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The Kalman gain of equation (3) is optimal (in the sense of minimum estimation error variance) 276 

only if the dynamic system (equation 1) is linear, if its model and observation error 277 

characteristics satisfy certain assumptions (including white and uncorrelated noise), and if the 278 

input error parameters are correctly specified (Gelb 1974).  In this case, the EnKF estimate is 279 

mathematically the best possible estimate of the true state given the observations, the model 280 

prediction, and the estimated errors of both.  But the L4_SM land model and observation 281 

operator are not linear (Koster et al. 2000; De Lannoy et al. 2013), and the L4_SM error 282 

characteristics further violate the above-mentioned assumptions.  The L4_SM analysis is 283 

therefore not optimal.  Nevertheless, as mentioned above, the analysis estimates have proven 284 

superior to model-only estimates when both are validated against in situ measurements (Reichle 285 

et al. 2017b).     286 

 287 

To address seasonally varying bias in the modeled Tbs, the observations (yt 
j) and model forecast 288 

(h(xt
 −)) of equation (2) are taken to be the anomalies of the SMAP and modeled Tbs from their 289 

respective long-term mean seasonal cycles.  The seasonal cycle of the SMAP Tbs was estimated 290 

from SMOS (version-5) Tb observations for the period July 2010 to June 2014.  The seasonal 291 

cycle of the modeled Tbs was estimated from a model-only simulation of the L4_SM system for 292 

the same period.  For details of this rescaling procedure, see section 3b and Figures 1 and 2 of 293 

(De Lannoy and Reichle 2016a) and section 2d of (Reichle et al. 2017b).   294 

 295 

c. Assimilation diagnostics 296 

The L4_SM system generates a variety of useful internal algorithm diagnostics that are available 297 

wherever and whenever SMAP observations are assimilated (see also Reichle et al. 2015b; their 298 



 14 

Appendix B).  Most importantly, the Tb forecasts generated by the model within the cycling 299 

assimilation system are repeatedly confronted with the assimilated observations as part of the 300 

analysis (equation 2).  This routine evaluation of model estimates against the assimilated 301 

observations is primarily reflected in the ensemble mean O-F Tb residuals (i.e., yt – h(xt
−)).   302 

 303 

In an optimally calibrated, linear system that satisfies the usual error assumptions (section 2b), 304 

the (ensemble mean) O-F residuals are a zero-mean, white noise sequence, thereby reflecting an 305 

unbiased analysis that extracts all of the information from the observations (Gelb 1974).  As 306 

already mentioned above (section 2b), the L4_SM analysis is not strictly optimal, but it is still 307 

interesting to know how close to optimal the system operates in any given region.  When the 308 

lagged auto-correlations of the O-F residuals are small and consistent with white noise, the 309 

system is nearly optimal and has extracted most of the available information from the 310 

observations (Daley 1992).  Conversely, when the lagged auto-correlations are not small, then 311 

the observations are not being used efficiently (Daley 1992).  The sample auto-correlation 312 

estimates presented below are based on the asymptotically unbiased estimator (Jenkins and Watts 313 

1968; their equation 5.3.25).  Four sets of sample auto-correlations were computed, separately 314 

for H-pol and V-pol O-F residuals from ascending and descending half-orbits, and then averaged 315 

across the four sets.  Auto-correlations were computed at a given location only if a total of at 316 

least 80 lagged data pairs were available.   317 

 318 

Moreover, the standard deviation of the O-F residuals is a measure of the typical (absolute) 319 

difference between a model forecast Tb and the corresponding (rescaled) SMAP observation.  In 320 

an optimally calibrated system, the covariance of the O-F residuals should thus equal the sum of 321 
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the covariances of the model forecast and observation errors (Reichle et al. 2002a; Desroziers et 322 

al. 2005), that is,  323 

 324 

  Cov( yt – h(xt
−) )  =  Cov( h(xt

−), h(xt
−) ) + Rt (4) 325 

 326 

In this expression, the left-hand-side represents the actual errors encountered in the system, and 327 

the right-hand-side represents the assumed errors.  The latter are prescribed through the 328 

specification of the observation error covariance and through the specification of the model and 329 

forcing perturbations, which are key inputs to the ensemble-based L4_SM assimilation algorithm 330 

(section 2b).  Assuming that the off-diagonal elements of the O-F covariance (equation 4) are 331 

small, a useful assimilation diagnostic is the standard deviation of the normalized O-F residuals.  332 

This diagnostic is readily obtained from the published L4_SM output by normalizing each O-F 333 

residual with its ensemble-diagnosed assumed error standard deviation, and then taking the time 334 

series standard deviation of these normalized O-F residuals.  In an optimally calibrated system, 335 

this diagnostic ought to be unity.  Values greater than one for this diagnostic indicate that the 336 

actual errors in the system are underestimated (that is, the actual errors are greater than the 337 

assumed errors).  Similarly, values less than one indicate that the actual errors are overestimated 338 

(that is, the actual errors are less than the assumed errors).  Note that the diagnostic only 339 

addresses the total error and does not distinguish between observation and forecast errors.    340 

 341 

Another useful diagnostic is provided by the ensemble mean O-A Tb residuals (i.e., yt – h(xt
+)), 342 

which are the differences between the (rescaled) SMAP Tb observations and the analyzed Tbs.  343 

(In the L4_SM system, the latter are diagnosed from the analyzed soil moisture and temperature 344 
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fields.)  As for the O-F residuals, the mean value for the O-A residuals should be zero in an 345 

optimally calibrated system.  The standard deviation of the O-A residuals should be less than that 346 

of the O-F residuals, with the difference reflecting the reduction in the uncertainty of the 347 

estimated Tbs obtained through the analysis.  Finally, the (time series) mean of the (ensemble 348 

mean) soil moisture and temperature increments (Δxt) should be zero in an optimally calibrated 349 

system, and the standard deviation of the increments is a measure of a typical analysis-based 350 

adjustment to the model forecast.  351 

 352 

 353 

 354 

 355 

 356 

357 
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3. Results       358 

Results are discussed in five subsections.  First, we present global maps of L4_SM soil moisture 359 

estimates (section 3a).  Next, we briefly illustrate the impact of the SMAP observations in the 360 

L4_SM analysis by investigating a particular rain event in Australia in May 2016 (section 3b).  361 

Finally, an assessment of the internal diagnostics of the L4_SM assimilation system offers useful 362 

insights at the global scale into the quality of the L4_SM product (section 3c-e).  This evaluation 363 

focuses on the counts of the assimilated Tb observations, on the statistics of the O-F and O-A Tb 364 

residuals, and on the statistics of the soil moisture and temperature analysis increments.  Some of 365 

the text in this section is adapted from two non-peer reviewed project reports (Reichle et al. 366 

2015b, 2016d) and has been updated to reflect the results obtained for the Version 2 L4_SM 367 

product and the longer validation period used here.    368 

 369 

a. Global soil moisture 370 

We start with a discussion of global maps of time-averaged L4_SM surface soil moisture (Figure 371 

1a) and root-zone soil moisture (Figure 1c) for the 2-year period from April 2015 to March 2017.  372 

The global patterns are as expected – arid regions such as the southwestern US, the Sahara 373 

desert, the Arabian Peninsula, southern Africa, and central Australia exhibit generally dry 374 

surface and root-zone soil moisture conditions, whereas the tropics (Amazon, central Africa, and 375 

Indonesia) and high-latitude regions show wetter conditions. One notable exception is that a 376 

portion of the Democratic Republic of Congo and adjacent areas appear unexpectedly dry.  This 377 

is because over Africa, the Version 2 L4_SM algorithm uses precipitation forcing directly from 378 

the GEOS-5 FP system, which has a known dry bias in central Africa similar to that of the 379 
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model-generated precipitation from the Modern-Era Retrospective Analysis for Research and 380 

Applications, version 2 (MERRA-2), reanalysis product (Reichle et al. 2017a; their Figure 3b).  381 

 382 

Generally, the global patterns of absolute soil moisture values are dominated by soil parameters 383 

and climatological factors, which is reflected in the similar patterns of the long-term average 384 

surface and root-zone soil moisture maps.  The influence of soil texture is noticeable in the 385 

coarse-scale patterns in the Sahara desert, where little is known about the spatial distribution of 386 

mineral soil fractions.  In the land model, areas with high values of soil organic carbon 387 

(including, for example, the region along the southern edge of Hudson Bay and portions of 388 

Alaska) are assigned a high porosity value and show persistently wetter conditions than other 389 

areas.  390 

 391 

The strong impact of climate on global soil moisture patterns is also reflected in the overall 392 

similarity between the time-averaged fields (Figure 1a and 1c) and the corresponding 393 

instantaneous fields for 1 June 2015 at 00:00 UTC, shown in Figure 1b and 1d, respectively, for 394 

surface and root-zone soil moisture.  In the latter maps, however, some regions do exhibit strong 395 

differences in soil moisture conditions from the long-term average values.  For example, the very 396 

wet conditions on 1 June 2015 in Texas, Oklahoma, and Kansas and extending into the US 397 

Midwest (Figure 1b and 1d) resulted from extreme rainfall events throughout May 2015.  398 

Another notable feature is the strong spatial contrast in dry and wet soil moisture conditions in 399 

western Australia on 1 June 2015.  This contrast resulted from parts of the region having seen 400 

unseasonably high rainfall conditions in May 2015, with a few locations recording their wettest 401 

May on record, and with many locations recording their wettest May for over twenty years.  In 402 
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contrast, the rest of Western Australia recorded rainfall that was below to very much below 403 

average (Bureau of Meteorology 2017).  Also visible in Figure 1b and 1d are the dry conditions 404 

on 1 June 2015 in Spain, which in this year experienced its driest May on record, followed by an 405 

extraordinarily long, intense summer heat wave (Blunden and Arndt 2016).  406 

 407 

The L4_SM product also includes a large number of output fields that are not subject to formal 408 

validation requirements.  Such “research” outputs include the surface meteorological forcing 409 

fields, land surface fluxes, soil temperature, and snow.  Figure 2 illustrates two of these fields for 410 

24 January 2016, the surface soil temperature (at 12:00 UTC) and the snow mass (3-hour average 411 

for 12:00-15:00 UTC).  Again, the global patterns are consistent with expectation.  The hottest 412 

surface soil temperatures are in equatorial eastern Africa, where the local time is around 3pm and 413 

the diurnal cycle of the surface soil temperature is at or near its peak.  The soil is frozen in large 414 

portions of the mid and high northern latitudes.  The snow mass distribution is also consistent 415 

with expectation, with nearly continuous snow cover in the northern high latitudes and in the 416 

northern hemisphere high mountain ranges.  Also visible is the snow accumulation from the 417 

severe blizzard that hit the eastern US on January 22-24, 2016 (Greybush et al. 2017).  Snow is 418 

all but absent in the southern hemisphere in the middle of the austral summer.  The L4_SM snow 419 

mass estimates are, by construction, similar to those from MERRA-2, which were found to have 420 

reasonable skill when compared to independent data (Reichle et al. 2017c).    421 

 422 

It should be noted that the L4_SM temperature and snow fields are largely determined by the 423 

forcing data and the Catchment model physics.  The L4_SM temperature fields are also impacted 424 

by the SMAP observations (directly through the soil temperature increments, and indirectly 425 
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through the effect of soil moisture on the surface energy balance via the latent heat flux).  But 426 

this impact is relatively minor (Reichle et al. 2017b; their Figure 6).  In any case, though, the 427 

L4_SM temperature and snow estimates are consistent with the L4_SM soil moisture estimates 428 

and may be useful for studies that require land surface data beyond soil moisture.   For example, 429 

the surface soil temperature and snow fields can be used to identify frozen or snow-covered 430 

conditions.  Unlike the SMAP Level 2 and 3 retrieval products, the L4_SM product does not 431 

provide binary flags to classify the conditions at the time for which the soil moisture estimates 432 

are valid.  Rather, the L4_SM product provides quantitative estimates of skin and soil 433 

temperatures, snow mass, precipitation, etc. (section 2a) that contain far more complete 434 

information than binary flags.  Users can readily convert this quantitative information into binary 435 

flags should the need arise.    436 

 437 

b. Illustration of the L4_SM analysis 438 

A key element of the L4_SM analysis update (section 2b) is the downscaling and inversion of the 439 

coarse-scale observational information of the assimilated Tbs into the modeled geophysical 440 

variables on the 9-km grid, a calculation that is based on modeled error characteristics, which 441 

vary dynamically and spatially.  In this section we provide an example and illustration of a single 442 

analysis update. 443 

 444 

Routine monitoring of the L4_SM analysis diagnostics (section 2c) revealed a large spike in the 445 

(spatial) standard deviation of the H-pol and V-pol O-F Tb residuals on 8 May 2016 at 21:00 446 

UTC (see also section 3d).  A closer investigation revealed that a major rain event occurred in 447 

the interior of Australia on this day (Figure 3a), according to observations from the Australian 448 
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Bureau of Meteorology (2017), and that this rain event was very poorly represented in the 449 

L4_SM forcing data (Figure 3b).  The L4_SM system relies on the daily, global, 0.5°, gauge-450 

based CPCU product (section 2a), which does not include many of the high-quality, local 451 

measurements available to the Bureau of Meteorology.  As a consequence, the precipitation used 452 

in the L4_SM system missed most of the rainfall that occurred in southeastern Queensland and 453 

northeastern South Australia.  The L4_SM precipitation further underestimated the rainfall in 454 

northern New South Wales.  Therefore, the soil moisture in the model forecast for 21:00 UTC 455 

was too dry, and the model forecast Tb was too high compared to the SMAP observations, 456 

resulting in very large negative O-F Tb residuals (Figure 3c).  Consequently, the L4_SM analysis 457 

of the SMAP Tb observations resulted in substantial corrections (or increments) to the modeled 458 

surface soil moisture (Figure 3d), root-zone soil moisture (Figure 3e), and surface soil 459 

temperature (Figure 3f).  460 

 461 

The example in Figure 3 clearly illustrates the difficulties of modeling soil moisture at the global 462 

scale using standard meteorological forcing datasets and the benefits to this modeling of 463 

assimilating SMAP Tb observations.  The quality of the global precipitation products that meet 464 

the L4_SM latency requirement is uneven at best.  The accuracy of the gauge-based CPCU 465 

product – the product selected for the L4_SM system – in a given region obviously depends on 466 

the density of gauges in that region, and few gauges are available in the interior of Australia 467 

(Reichle et al. 2017a; their Figure 8e).  Note also that over land, satellite-based precipitation 468 

products are not necessarily better on average than gauge-based products, and global combined 469 

satellite-gauge products are not available with the required latency (for L4_SM operational 470 

production) and length of record (to calibrate the L4_SM system).  In this particular case, the 471 
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SMAP Tb observations are clearly inconsistent with the precipitation estimates from the CPCU 472 

product but are consistent with the more accurate regional precipitation measurements from the 473 

Australian Bureau of Meteorology.  The analysis of SMAP Tb observations was able to correct 474 

short-term errors in the L4_SM CPCU-based precipitation forcing and thereby improve the 475 

L4_SM soil moisture estimates.   476 

 477 

c. Observation counts 478 

In this section we investigate the number of assimilated SMAP Tb observations.  Figure 4 shows 479 

the total number of Tb observations that were assimilated during the assessment period (April 480 

2015 to March 2017).  This count includes H-pol and V-pol observations from ascending and 481 

descending half-orbits (after first averaging over fore- and aft-looking Tbs).  The average data 482 

count across the globe is ~804 for the 731-day period (excluding areas where observations were 483 

never assimilated, see below), which implies that one pair of H-pol and V-pol Tb observations 484 

was assimilated approximately every other day on average.  Few or no SMAP Tbs were 485 

assimilated (1) in some mountainous areas, including portions of the Rocky Mountains and the 486 

Andes, (2) along coastlines and next to major rivers and lakes, including the Amazon, the Congo, 487 

and the Great Lakes, and (3) in regions with many small lakes, such as in northern Canada.  488 

Generally, SMAP Tb observations within 40 km of major water bodies and for grid cells with 489 

water fraction exceeding 5% are excluded because the L4_SM model cannot predict the mixed 490 

(land and water) signal that is present in these observations and would thus yield an incompatible 491 

(land-only) Tb forecast.  Despite the much shorter warm (unfrozen) season at high-latitudes, far 492 

northern areas exhibit relatively high counts of assimilated Tb observations because of SMAP’s 493 

polar orbit, which results in more frequent revisit times there. 494 
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 495 

SMAP Tb observations were also never assimilated across large areas in eastern Europe and the 496 

southern half of continental Asia (Figure 4) because in this region L-band radio-frequency 497 

interference (RFI) is common (Oliva et al. 2012).  To the extent possible, SMAP is equipped 498 

with a variety of hardware and software tools that detect and mitigate RFI, which allows SMAP 499 

to provide science-quality observations of the naturally emitted Tb with near-global coverage 500 

(Piepmeier et al. 2014, 2017).  However, the L4_SM algorithm also requires knowledge of the 501 

climatological seasonal cycle of the L-band Tb observations to address the bias in the 502 

corresponding Tb model forecasts (section 2b).  This (seasonally varying) L-band climatology is 503 

derived from observations provided by the Soil Moisture Ocean Salinity (SMOS) mission.  In the 504 

RFI-affected areas, SMOS does not provide Tb observations of sufficient quality and quantity to 505 

derive the climatology.  The resulting spatial (and temporal) gaps in the climatology thus 506 

constrain the coverage of SMAP assimilation in Version 2 of the L4_SM algorithm.  (These gaps 507 

are largely closed in the recently released Version 3 L4_SM system because its Tb rescaling 508 

parameters are based on SMOS and SMAP observations.)  It is important to note, though, that 509 

the L4_SM product provides soil moisture estimates everywhere, even if in some regions the 510 

L4_SM estimates are not based on the assimilation of SMAP observations and thus rely solely 511 

on the information in the model and forcing data.  512 

 513 

Next, Figure 5a shows a daily time series of the global observation counts for April 2015 to 514 

March 2017, again including H-pol and V-pol observations from ascending and descending half-515 

orbits.  The data counts clearly vary with season.  They also vary with time of day (not shown);  516 

there are 8 analysis times per day (at 0z, 3z, …, 18z, and 21z), and the counts vary according to 517 
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the amount of land surface area at those times having a local time close to 6am or 6pm, when 518 

SMAP crosses the Equator.  Each day the L4_SM analysis typically ingests between 40,000 and 519 

100,000 SMAP Tb observations (Figure 5a), with a mean of about 65,300 observations.  520 

Occasionally, few or no observations were assimilated (e.g., 13 May 2015, 16 Dec 2015, 1 May 521 

2016) because of short gaps in the SMAP observation record when the spacecraft was in safe 522 

mode.  523 

 524 

d. Brightness temperature residuals  525 

In this section we investigate the O-F and O-A Tb residuals (section 2c).  Figure 5b shows the 526 

daily time series of the spatially averaged O-F and O-A residuals.  Global mean O-F values 527 

typically range from -2 K to 2 K, with a long-term average value of just 0.34 K.  Typical mean 528 

O-A values are slightly smaller than mean O-F values and have a long-term average value of 529 

0.25 K.  Overall, the relatively small mean O-F and O-A values suggest that the assimilation 530 

system is reasonably bias-free, at least in a global average sense.  531 

 532 

Typical magnitudes of the O-F Tb residuals, indicated by the values of their daily (spatial) 533 

standard deviation, range between 4 K and 10 K (Figure 5c).  The standard deviations of the O-A 534 

residuals range from 3 K to 6 K and are generally lower than those of the O-F residuals (Figure 535 

5c).  The long-term average of 4.0 K for the O-A standard deviation, compared to 5.9 K for the 536 

O-F residuals, reflects the reduction in uncertainty obtained from the analysis.  The values of the 537 

O-F spatial standard deviation show occasional spikes of around 8-10 K.  Some of the spikes 538 

occur simply because few observations were assimilated on the days in question (Figure 5a).  539 

The 8 May 2016 spike, however, as well as several others (e.g., 1 January 2016, 2 Feb 2016, and 540 
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10 March 2016), can be traced back to extreme O-F values in the corresponding 21z analysis 541 

over Australia, which has very large negative O-F values reaching -90 K across a large region 542 

(e.g., Figure 3c).  That is, these spikes correspond to major rain events in Australia during an 543 

unusually wet period, rain events that were missed in the CPCU-based precipitation forcing data 544 

used for L4_SM (section 3b).  This again highlights the potential for SMAP to provide valuable 545 

information about soil moisture and rainfall in areas where precipitation estimates are most 546 

impacted by errors. 547 

 548 

Next, Figure 6 shows the global distributions of the time series mean and standard deviation of 549 

the O-F residuals.  The time mean values of the O-F residuals are typically small and mostly 550 

range from -3 K to 3 K (Figure 6a).  Overall, there is a positive bias of 0.37 K, with fewer areas 551 

exhibiting negative mean O-F values.  The largest values of around 3 K are found in the Sahel 552 

and in central and southern Africa.  Note that over Africa (and in the high latitudes), the L4_SM 553 

precipitation forcing is not corrected to the gauge-based product (section 2a; Reichle and Liu 554 

2014).  Consequently, the L4_SM algorithm is somewhat biased where the climatology of the 555 

present forcing data (from the ~¼° GEOS-5.13 FP system; Lucchesi 2013a) is inconsistent with 556 

that of the historic forcing data (from the ~½° GEOS-5.9 reprocessing “FP-IT” system; Lucchesi 557 

2013b), which was used to derive the Tb rescaling parameters in the pre-launch algorithm 558 

calibration (section 2b).  Relatively high mean O-F values are also seen in the center of the 559 

United States, Argentina, Uruguay, Australia, and portions of Siberia, which indicates that the 560 

L4_SM system would benefit from further calibration of the Tb rescaling parameters or, 561 

preferably, from reducing the bias in the modeling system. 562 

 563 
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The time series standard deviation of the O-F residuals ranges from a few Kelvin to around 15 K, 564 

with a global (spatial) average of about 6.0 K (Figure 6b).  High values are found, for example, 565 

in central North America, the Sahel, central Asia, and Australia.  These regions have sparse or 566 

modest vegetation cover and typically exhibit strong variability in soil moisture conditions.  The 567 

O-F residuals are generally smallest in more densely vegetated regions, including the eastern 568 

United States, the Amazon basin, and tropical Africa.  Small values are also found in the high-569 

latitudes, including Alaska and Siberia, and in the Sahara desert.  The spatially averaged time 570 

series standard deviation of the O-A residuals is 4.0 K (not shown), which again reflects the 571 

impact of the SMAP observations on the L4_SM system.  (Note that the spatio-temporal average 572 

statistics reported for Figure 5 are slightly different from those of Figure 6 because they are 573 

derived in different ways: by temporally averaging spatial statistics and by spatially averaging 574 

temporal statistics, respectively.)   575 

 576 

Next, Figure 7 shows the standard deviation of the normalized O-F residuals, which measures the 577 

consistency between the assumed (modeled) errors and the actual errors in the observations and 578 

the model forecasts (section 2c).  The global average of the metric is indeed 1.0 (Figure 7), 579 

which would suggest that, on average, the assumed errors are consistent with the actual errors.  580 

The metric, however, varies greatly across the globe.  Typical values are either too low or too 581 

high.  In densely vegetated regions (Amazon basin, eastern US, tropical Africa, Indonesia), 582 

deserts (Sahara, Arabian Peninsula), and the high northern latitudes, values range from 0.25 to 583 

0.5, and thus the actual errors there are considerably overestimated.  In these regions, the total 584 

actual Tb errors (Figure 6b) are smaller than the assumed observation error standard deviation of 585 

4 K, suggesting that the error of representativeness (which dominates the assumed observation 586 
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error; section 2b) is too large.  Conversely, in agricultural regions, including irrigated areas, and 587 

in transition zones between dry and wet climates (including central North America, portions of 588 

Brazil and Argentina, the Sahel, and India), values range from 1.5 to 4, meaning that the actual 589 

errors in these regions are considerably underestimated.  Large values are also found in most of 590 

Australia, where errors in the precipitation forcing are particularly pronounced (section 3b) and 591 

presumably underestimated.  In these regions, it is thus likely that the model forecast error is 592 

underestimated. 593 

 594 

The standard deviation of the normalized O-F residuals (Figure 7) only evaluates the total error 595 

covariance (equation 4), whereas the Kalman gain (equation 3), and thus the weights given to the 596 

observations in the analysis, depend on the relative magnitude of the observation and model 597 

forecast errors.  That is, the algorithm may well be using near-optimal weights even as the total 598 

error covariance is poorly specified.  How efficiently the algorithm uses the observations is 599 

measured, at least for a linear system, by the lagged auto-correlation of the O-F residuals (section 600 

2c).  The global average of this metric is shown in Figure 8a for lags from 1 day to 10 days.  The 601 

auto-correlations are always positive, which is not consistent with the white noise characteristics 602 

expected from an optimal (linear) system.   603 

 604 

The average number of data pairs that contribute to the auto-correlation estimate at a given 605 

location is shown in Figure 8b, along with the corresponding fraction of the global land area for 606 

which auto-correlation estimates were computed.  These statistics vary with lag according to the 607 

characteristics of the SMAP orbit (Figure 8b).  Statistics with at least 50% coverage are available 608 

for lags of 2, 3, 5, 6, 8 and 10 days.  The maximum number of data pairs and coverage is 609 
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obtained for a lag of 8 days, which matches the exact repeat interval for the SMAP orbit.  (Note 610 

that the number of data pairs and coverage is very similar for lags separated by 8 days, e.g., for 611 

lags of 2 and 10 days.)   612 

 613 

The spatial distributions of the auto-correlations for lags of 2, 3, 5, 6, 8 and 10 days are shown in 614 

Figure 9.  Auto-correlation values that are within the 95% confidence intervals for white noise 615 

are shown in gray.  When interpreting Figure 9, it is important to keep in mind that the width of 616 

the 95% confidence intervals, and thus the area showing significant auto-correlations, changes 617 

with lag partly because the number of data points changes with lag (Figure 8b) owing to the 618 

SMAP orbital characteristics.   Notably, the 95% confidence intervals are smaller at 3-day lag 619 

than at 2-day lag, and they are smallest at 8-day lag.  Across the lags shown in Figure 9, the auto-620 

correlations are consistent with white noise (that is, not significantly different from zero at the 621 

5% level) in several regions, including most of western North America, the Sahel, southern 622 

Africa, and central Australia, suggesting that in these regions the L4_SM algorithm makes 623 

efficient use of the observations.   624 

 625 

The auto-correlations are significant, however, for some lags across the eastern US, most of 626 

South America, central Africa, and in the northern high latitudes (Figure 9), suggesting that in 627 

these regions the SMAP observations are not used efficiently in the current version of the 628 

L4_SM algorithm.  A closer inspection of the results reveals that the regions with significant O-F 629 

auto-correlations (Figure 9) tend to have relatively small (typical) O-F values (Figure 6b) that are 630 

dominated by seasonally varying bias (not shown), resulting in high auto-correlation values.  631 

Somewhat fortuitously, many regions of sub-optimal algorithm performance thus largely 632 
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coincide with regions where SMAP Tb observations are not expected to have much influence on 633 

the L4_SM estimates, including the forested regions of the eastern US and the tropics, where 634 

there is relatively little sensitivity of L-band Tbs to soil moisture.   635 

 636 

Furthermore, the high auto-correlation at 8-day lag in Libya (Figure 9e) can be traced back to the 637 

6pm (ascending) SMAP overpass time and is probably related to errors caused by residual RFI in 638 

the 6pm (descending) SMOS observations used to derive the Tb rescaling parameters (section 639 

2b).  Moreover, the high auto-correlation values at lags up to 8 days in the northern high latitudes 640 

and in the non-forested regions of Africa (Figure 9) may be related to seasonally varying bias 641 

caused by the above-mentioned inconsistencies between the current (GEOS-5 FP) and historic 642 

(GEOS-5 FP-IT) model forcing data.  Finally, there is a relative maximum in the O-F auto-643 

correlations at 8-day lag (Figures 8 and 9), which may reflect the periodicity in the spatial 644 

representativeness errors caused by the 8-day exact repeat interval of the SMAP viewing 645 

geometry.  A similar connection between errors in gridded soil moisture retrieval products and 646 

orbit repeat cycles was tentatively established by Su et al. (2013) and Lei et al. (2017). 647 

 648 

The auto-correlations reveal potential avenues for improving the L4_SM algorithm, but it is 649 

important to keep in mind that the inferences offered above are uncertain.  For example, serially 650 

correlated model or observation errors, if present, result in non-zero values of the lagged O-F 651 

auto-correlations, even if the weights assigned to the observations are nearly optimal, which 652 

compromises the use of the O-F auto-correlations as a diagnostic for optimality (Daley 1992; 653 

Crow and van den Berg 2010).  In the L4_SM system, errors in the parameters of the radiative 654 

transfer model (required for the observation operator) likely result in serially correlated 655 
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observation errors, and the ensemble perturbations approach likely results in serially correlated 656 

model errors.  Moreover, the L4_SM land surface model dynamics are non-linear.  The O-F 657 

auto-correlations results must therefore be interpreted carefully. 658 

 659 

 660 

 661 

e. Soil moisture and temperature increments 662 

Finally, we evaluate the statistics of the soil moisture and temperature analysis increments 663 

(section 2c).  Strictly speaking, the increments are in the space of the Catchment model 664 

prognostic variables that make up the EnKF state vector, including the “catchment deficit”, 665 

“root-zone excess”, “surface excess”, and “top-layer ground heat content” (section 2b; Reichle et 666 

al. 2017b).  For the discussion below, the increments were expressed in the equivalent soil 667 

moisture and temperature terms.    668 

 669 

Figure 10 shows the average number of increments that the L4_SM algorithm generated per day 670 

during the assessment period (April 2015 to March 2017).  The global mean is 0.70 (excluding 671 

areas where increments were never computed), which means that for a given location, there are 672 

approximately two increments applied every three days on average, either from an ascending or a 673 

descending overpass.  The overall pattern of the increments count follows that of the count of the 674 

assimilated observations (Figure 4).  The coverage of the increments, however, is somewhat 675 

greater than that of the observations due to the spatial interpolation and extrapolation of the 676 

observational information in the distributed analysis update of the L4_SM algorithm.  The figure 677 

also reveals the diamond patterns resulting from SMAP’s regular 8-day repeat orbit.   678 
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 679 

Next, Figure 11 shows the time mean values of the analysis increments for surface and root-zone 680 

soil moisture as well as for the surface (layer-1) soil temperature.  In the long-term average, the 681 

increments for root-zone soil moisture and surface soil temperature vanish nearly everywhere.  682 

Only the increments in surface soil moisture exhibit a bias in some regions, including the US 683 

Great Plains, the Sahel, southern Africa, and Australia, with occasional values of around -0.01 684 

m3 m-3.  These mean drying increments are a reflection of the warm bias in the O-F residuals 685 

(Figure 6a).  Nevertheless, Figure 11 suggests that the analysis system is very nearly unbiased in 686 

the global mean sense. 687 

 688 

Finally, Figure 12 shows the time series standard deviation of the increments in surface and root-689 

zone soil moisture as well as surface soil temperature.  This metric measures the typical 690 

magnitude of instantaneous increments.  Typical increments in surface soil moisture (Figure 12a) 691 

are on the order of 0.01-0.02 m3 m-3 in the western US, central Mexico, southern Argentina, the 692 

Sahel, southern Africa, central Asia, and southern India.  Typical increments are somewhat 693 

larger (0.02-0.03 m3 m-3) in most of Australia and smaller (0.005 m3 m-3) in the eastern US, 694 

eastern Brazil, and the high northern latitudes.  Over the tropical forests, surface soil moisture 695 

increments are generally negligible, reflecting the fact that in those areas the measured SMAP 696 

Tbs are mostly sensitive to the dense vegetation and are only marginally sensitive to soil 697 

moisture and soil temperature. 698 

 699 

Typical increments in root-zone soil moisture (Figure 12b) show a global pattern that is very 700 

similar to that of the surface soil moisture increments, albeit with smaller magnitudes that again 701 
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reflect the weaker error correlations between the Tb observations and the deeper layer soil 702 

moisture.  The magnitude of the average root-zone soil moisture increments rarely exceeds 0.01 703 

m3 m-3, with a global average value of about 0.003 m3 m-3 (excluding areas where increments 704 

were never computed).  Finally, typical increments for the surface soil temperature (Figure 12c) 705 

and the skin temperature (not shown) also exhibit a pattern similar to that of the surface soil 706 

moisture increments, with typical (absolute) surface soil temperature increments in dry regions 707 

ranging between 0.5 K and 1.5 K.  The relatively small magnitude of the temperature increments 708 

reflects the fact that the L4_SM Tb analysis has been calibrated primarily for updating the model 709 

soil moisture (De Lannoy and Reichle 2016a; Reichle et al. 2017b). 710 

 711 

712 
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5. Summary and Conclusions     713 

The SMAP L4_SM algorithm assimilates SMAP Tb observations into the NASA Catchment 714 

model and thereby interpolates and extrapolates the information from the SMAP observations in 715 

time and in space by combining them with the model estimates, taking into consideration the 716 

relative uncertainties of each.  The resulting L4_SM data product represents this merged 717 

information and consists of global, 3-hourly, 9-km resolution estimates of surface and root-zone 718 

soil moisture conditions, along with a number of related land surface fields such as soil 719 

temperatures and snow mass.  The L4_SM product is available from 31 March 2015 to present, 720 

with a latency of 2-3 days from the time of observation.  721 

 722 

The 2-year climatology of the L4_SM surface and root-zone soil moisture estimates captures the 723 

expected global patterns of arid and humid regions (Figure 1).  Moreover, we investigated the 8 724 

May 2016, 21:00 UTC analysis over Australia, which exhibited very large negative O-F Tb 725 

residuals, suggesting that the model forecast soil moisture was much too dry at the time in 726 

question (Figure 3).  The reason for the lack of soil moisture prior to the analysis turned out to be 727 

a large underestimation in the rainfall used to force the model over the course of the preceding 728 

day.  The assimilation of SMAP observations resulted in a considerable correction of the model 729 

forecast soil moisture towards wetter conditions, thereby compensating for the short-term deficit 730 

in the L4_SM rainfall forcing.  This case study clearly demonstrates that the assimilation of 731 

SMAP Tb observations can correct for such transient errors in the L4_SM modeling system.  The 732 

L4_SM system is not designed, however, to correct for bias in the forcing data, such as the dry 733 

precipitation bias in the GEOS-5 forcing in central Africa (section 3a). 734 

 735 
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By validating the L4_SM product against in situ measurements, Reichle et al. (2017b) 736 

demonstrated that the L4_SM soil moisture estimates meet their accuracy requirement and are 737 

better than estimates from a model-only simulation that does not benefit from the assimilation of 738 

SMAP observations.  The number of locations with suitable in situ measurements, however, is 739 

very limited.  The present paper supplements the in situ validation results of Reichle et al. 740 

(2017b) with an evaluation of the internal diagnostics of the L4_SM assimilation algorithm, 741 

which are available quasi-globally, wherever and whenever SMAP observations are assimilated.  742 

The assimilation diagnostics include the statistics of the observation counts, the O-F and O-A Tb 743 

residuals, and the soil moisture and temperature increments. 744 

 745 

The Version 2 L4_SM system assimilates between 40,000 and 100,000 SMAP Tb observations 746 

each day (Figure 5a), or about one pair of H-pol and V-pol Tb observations every other day, on 747 

average, over land where SMAP data are assimilated.  SMAP observations are not assimilated 748 

over land that is permanently glaciated, close to open water or major rivers, or affected by RFI, 749 

where the necessary L-band climatology cannot be obtained from SMOS, including large 750 

portions of Europe, the Arabian Peninsula, and southern continental Asia (Figure 4).  Because 751 

the impact of the assimilated SMAP Tb observations in the spatially distributed analysis update 752 

is non-local, soil moisture and temperature increments are applied over a somewhat larger area, 753 

which includes land close to major rivers and shorelines (Figure 10). 754 

 755 

The instantaneous soil moisture and temperature analysis increments are within a reasonable 756 

range and, as expected, small over densely vegetated regions (Figure 12).  The distributed 757 

filtering approach results in spatially smooth soil moisture increments (Figure 3).  Moreover, the 758 



 35 

time-average increments are well below 0.01 m3 m-3 for soil moisture and less than 1 K for 759 

surface soil temperature nearly everywhere (in terms of magnitude), suggesting that the L4_SM 760 

system is reasonably unbiased (Figure 11).  Similarly, the O-F Tb residuals exhibit only small 761 

(absolute) biases on the order of 1-3 K between the (rescaled) SMAP observations and the 762 

corresponding L4_SM model forecasts (Figure 6a).  This further indicates that the assimilation 763 

system is essentially unbiased owing to the rescaling of the Tb observations prior to assimilation.  764 

The spatially averaged time series standard deviation of the O-F Tb residuals is 5.9 K (Figure 765 

6b), which reduces to 4.0 K for the O-A residuals.  This decrease reflects the reduction of the 766 

uncertainty following the assimilation of the SMAP observations.  Averaged globally, the time 767 

series standard deviation of the normalized O-F residuals is close to unity (Figure 7), which 768 

would suggest that the magnitude of the assumed errors in the model and the observations 769 

approximately reflects that of the actual O-F errors.  770 

 771 

The results, however, also reveal several limitations of the Version 2 L4_SM data product and 772 

science algorithm calibration that will need to be addressed in future releases.  Regionally, the 773 

time series standard deviation of the normalized O-F residuals deviates considerably from unity 774 

(Figure 7), which indicates that the L4_SM assimilation algorithm either over- or underestimates 775 

the actual errors that are present in the system.  This pattern is caused, at least in part, by the use 776 

of a spatially constant Tb observation error variance that does not capture the spatially variable 777 

representativeness errors associated with the radiative transfer model.  Additionally, the spatially 778 

constant perturbation parameters do not account for spatially varying model error characteristics, 779 

including errors associated with the lack of irrigation in the modeling system. 780 

 781 
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Furthermore, non-zero and generally positive values of the lagged auto-correlations of the O-F 782 

residuals suggest that the SMAP Tb observations are not used efficiently in many forested 783 

regions (including the eastern US and the tropics), in most of the northern high latitudes, and in 784 

portions of South America and Africa (Figures 8 and 9).  The lack of efficiency may be caused 785 

by seasonally varying bias, auto-correlated model and/or observation errors, and/or non-786 

linearities in the land model and observation operator.  In many of these regions, SMAP has only 787 

a small impact on the L4_SM soil moisture estimates (that is, typically small O-F residuals and 788 

soil moisture increments), which is, at least for the forested regions, as expected.  Finally, the 789 

adverse impact of RFI on the SMOS Tb observations in large portions of Europe, the Middle 790 

East, and East Asia made it impossible to calibrate the L4_SM algorithm and assimilate SMAP 791 

observations in these regions in the Version 2 L4_SM release (Figure 4).  792 

 793 

Future improvements of the L4_SM algorithm should focus on mitigating the over- and 794 

underestimation of the actual errors, which will likely require the specification of spatially 795 

variable inputs for the observation and model error characteristics.  Additional revisions should 796 

focus on the structure and parameters of the Catchment model to reduce the bias in the L4_SM 797 

soil moisture and temperature (Reichle et al. 2017b).  This bias in the L4_SM product is 798 

primarily driven by the bias in the Catchment model because the Tb rescaling yields, by 799 

construction, a reasonably unbiased L4_SM analysis.  Furthermore, the radiative transfer model 800 

and its parameters should be improved to reduce the Tb bias in the modeling system and thus 801 

minimize the need for Tb rescaling.  These biases could be reduced prior to data assimilation 802 

(through model calibration) or dynamically within the assimilation system (through 803 

augmentation of the state vector).   804 
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 805 

Eliminating the seasonally varying bias in the modeled Tb and soil moisture, however, is 806 

difficult and likely requires a few more years of SMAP observations.  In the meantime, the 807 

recently released Version 3 L4_SM product employs improved Tb rescaling parameters that are 808 

based on (1) a longer period (and newer version) of SMOS observations where available and the 809 

shorter record of SMAP observations elsewhere (in particular, in regions where RFI prevents the 810 

use of SMOS data) and (2) a model Tb climatology constructed using retrospective surface 811 

meteorological forcing data that are more consistent with the forcing data used during the SMAP 812 

period.  In this way, SMAP observations are now assimilated almost everywhere and with 813 

improved bias correction.  In summary, the present paper and its companion (Reichle et al. 814 

2017b) demonstrate that the L4_SM product is sufficiently mature and of adequate quality for 815 

distribution to and use by the larger science and application communities. 816 

817 
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Figure Captions 1037 

 1038 

Fig. 1.  (a) Two-year average (April 2015 to March 2017) L4_SM surface soil moisture.  (b) 1039 

Snapshot of L4_SM surface soil moisture on 1 June 2015 at 00:00 UTC.  (c) As in (a) but for 1040 

root-zone soil moisture.  (d) As in (b) but for root-zone soil moisture. 1041 

 1042 

Fig. 2.  L4_SM (a) surface soil temperature analysis for 24 January 2016, 12:00 UTC and (b) 1043 

snow mass for 24 January 2016, 12:00-15:00 UTC.   1044 

 1045 

Fig. 3.  Cumulative precipitation for 8 May 2016 (00:00 UTC to 00:00 UTC) indicated by (a) 1046 

measurements from the Australian Bureau of Meteorology (BoM) and (b) the L4_SM 1047 

precipitation inputs.  (c) O-F residuals for H-pol Tb on 8 May 2016, 21:00 UTC.  Analysis 1048 

increments of (d) surface soil moisture, (e) root-zone soil moisture, and (f) surface soil 1049 

temperature on 8 May 2016, 21:00 UTC.  Australian states and territories are labeled in (b). 1050 

 1051 

Fig. 4.  Number of SMAP Tb observations used in the L4_SM algorithm during April 2015 to 1052 

March 2017.  Data counts include H-pol and V-pol data from ascending and descending half-1053 

orbits. 1054 

 1055 

1056 
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Fig. 5.  (a) Daily counts of SMAP Tb observations assimilated into L4_SM during April 2015 to 1057 

March 2017, including H-pol and V-pol data from ascending and descending orbits.  (b) Mean of 1058 

the corresponding O-F and O-A Tb residuals, where the mean values are computed separately for 1059 

each 3-hourly analysis by averaging across the global land domain (where SMAP observations 1060 

are assimilated) and then averaging the resulting values over the 8 analysis times for each day.  1061 

(c) As in (b) but for the standard deviation.  Vertical grid lines indicate the first day of each 1062 

month.  1063 

 1064 

Fig. 6.  (a) Mean and (b) standard deviation of the O-F Tb residuals from the L4_SM algorithm 1065 

for April 2015 to March 2017.   1066 

 1067 

Fig. 7.  Standard deviation of the normalized O-F Tb residuals from the L4_SM algorithm for 1068 

April 2015 to March 2017.    1069 

 1070 

Fig. 8.  (a) Spatially averaged, lagged sample auto-correlation of the O-F Tb residuals.  (b) 1071 

Average number of O-F data pairs at each grid cell (black; left axis) and fractional area coverage 1072 

(gray; right axis) contributing to the sample auto-correlation values. 1073 

 1074 

Fig. 9.  Sample auto-correlation of the O-F Tb residuals at (a) 2-day, (b) 3-day, (c) 5-day, (d) 6-1075 

day, (e) 8-day, and (f) 10-day lag.  Values that are not significantly different from zero (at the 1076 

5% level) are shown in gray.  1077 

 1078 

1079 
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Fig. 10.  Average number of increments per day generated by the L4_SM algorithm during April 1080 

2015 to March 2017.  The result applies equally to all elements of the control vector, including 1081 

the model prognostic variables related to surface soil moisture, root-zone soil moisture, skin 1082 

temperature, and surface (layer-1) soil temperature. 1083 

 1084 

Fig. 11.  Time series mean of the increments for (a) surface soil moisture, (b) root-zone soil 1085 

moisture, and (c) surface (layer-1) soil temperature from the L4_SM algorithm for April 2015 to 1086 

March 2017.   1087 

 1088 

Fig. 12.  Same as Figure 10 but for time series standard deviation of the increments.   1089 

 1090 

 1091 

 1092 
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Figures 1093 

 1094 

 1095 

Fig. 1.  (a) Two-year average (April 2015 to March 2017) L4_SM surface soil moisture.  (b) Snapshot of L4_SM surface soil moisture 1096 

on 1 June 2015 at 00:00 UTC.  (c) As in (a) but for root-zone soil moisture.  (d) As in (b) but for root-zone soil moisture. 1097 
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 1098 

Fig. 2.  L4_SM (a) surface soil temperature analysis for 24 January 2016, 12:00 UTC and (b) 1099 

snow mass for 24 January 2016, 12:00-15:00 UTC.   1100 

 1101 
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 1102 

Fig. 3.  Cumulative precipitation for 8 May 2016 (00:00 UTC to 00:00 UTC) indicated by (a) measurements from the Australian 1103 

Bureau of Meteorology (BoM) and (b) the L4_SM precipitation inputs.  (c) O-F residuals for H-pol Tb on 8 May 2016, 21:00 UTC.  1104 

Analysis increments of (d) surface soil moisture, (e) root-zone soil moisture, and (f) surface soil temperature on 8 May 2016, 21:00 1105 

UTC.  Australian states and territories are labeled in (b).1106 
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 1107 

Fig. 4.  Number of SMAP Tb observations used in the L4_SM algorithm during April 2015 to 1108 

March 2017.  Data counts include H-pol and V-pol data from ascending and descending half-1109 

orbits. 1110 

 1111 

1112 
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 1113 

Fig. 5.  (a) Daily counts of SMAP Tb observations assimilated into L4_SM during April 2015 to 1114 

March 2017, including H-pol and V-pol data from ascending and descending orbits.  (b) Mean of 1115 

the corresponding O-F and O-A Tb residuals, where the mean values are computed separately for 1116 

each 3-hourly analysis by averaging across the global land domain (where SMAP observations 1117 

are assimilated) and then averaging the resulting values over the 8 analysis times for each day.  1118 

(c) As in (b) but for the standard deviation.  Vertical grid lines indicate the first day of each 1119 

month.  1120 
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 1121 

Fig. 6.  (a) Mean and (b) standard deviation of the O-F Tb residuals from the L4_SM algorithm 1122 

for April 2015 to March 2017.   1123 

 1124 

 1125 

1126 
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 1127 

Fig. 7.  Standard deviation of the normalized O-F Tb residuals from the L4_SM algorithm for 1128 

April 2015 to March 2017.    1129 

1130 
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 1131 

Fig. 8.  (a) Spatially averaged, lagged sample auto-correlation of the O-F Tb residuals.  (b) 1132 

Average number of O-F data pairs at each grid cell (black; left axis) and fractional area coverage 1133 

(gray; right axis) contributing to the sample auto-correlation values. 1134 
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 1135 

Fig. 9.  Sample auto-correlation of the O-F Tb residuals at (a) 2-day, (b) 3-day, (c) 5-day, (d) 6-day, (e) 8-day, and (f) 10-day lag.  1136 

Values that are not significantly different from zero (at the 5% level) are shown in gray.  1137 
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 1138 

Fig. 10.  Average number of increments per day generated by the L4_SM algorithm during April 1139 

2015 to March 2017.  The result applies equally to all elements of the control vector, including 1140 

the model prognostic variables related to surface soil moisture, root-zone soil moisture, skin 1141 

temperature, and surface (layer-1) soil temperature. 1142 

 1143 

1144 
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 1145 

Fig. 11.  Time series mean of the increments for (a) surface soil moisture, (b) root-zone soil 1146 

moisture, and (c) surface (layer-1) soil temperature from the L4_SM algorithm for April 2015 to 1147 

March 2017.   1148 



 63 

 1149 

Fig. 12.  Same as Figure 10 but for time series standard deviation of the increments.   1150 


