48 research outputs found

    Phylomorphometrics reveal ecomorphological convergence in pea crab carapace shapes (Brachyura, Pinnotheridae)

    Get PDF
    Most members of the speciose pea crab family (Decapoda: Brachyura: Pinnotheridae) are characterized by their symbioses with marine invertebrates in various host phyla. The ecology of pea crabs is, however, understudied, and the degree of host dependency of most species is still unclear. With the exception of one lineage of ectosymbiotic echinoid‐associated crabs, species within the subfamily Pinnotherinae are endosymbionts, living within the body cavities of mollusks, ascidians, echinoderms, and brachiopods. By contrast, most members of the two other subfamilies are considered to have an ectosymbiotic lifestyle, sharing burrows and tubes with various types of worms and burrowing crustaceans (inquilism). The body shapes within the family are extremely variable, mainly in the width and length of the carapace. The variation of carapace shapes in the family, focusing on pinnotherines, is mapped using landmark‐based morphometrics. Mean carapace shapes of species groups (based on their host preference) are statistically compared. In addition, a phylomorphometric approach is used to study three different convergence events (across subfamilies; between three genera; and within one genus), and link these events with the associated hosts

    A review of the ecomorphology of pinnotherine pea crabs (Brachyura: <i>Pinnotheridae</i>), with an updated list of symbiont-host associations

    Get PDF
    Almost all pea crab species in the subfamily Pinnotherinae (Decapoda: Brachyura: Pinnotheridae) are considered obligatory endo- or ectosymbionts, living in a mutualistic or parasitic relationship with a wide variety of invertebrate hosts, including bivalves, gastropods, echinoids, holothurians, and ascidians. While the subfamily is regarded as one of the most morphologically adapted groups of symbiotic crabs, the functionality of these adaptations in relation to their lifestyles has not been reviewed before. Available information on the ecomorphological adaptations of various pinnotherine crab species and their functionality was compiled in order to clarify their ecological diversity. These include the size, shape, and ornamentations of the carapace, the frontal appendages and mouthparts, the cheliped morphology, the ambulatory legs, and the reproductive anatomy and larval characters. The phylogenetic relevance of the adaptations is also reviewed and suggestions for future studies are made. Based on an updated list of all known pinnotherine symbiont–host associations and the available phylogenetic reconstructions, it is concluded that, due to convergent evolution, unrelated species with a similar host interaction might display the same morphological adaptations.Peer Reviewe

    A new Nigerian hunter snail species related to Ennea serrata d'Ailly, 1896 (Gastropoda, Pulmonata, Streptaxidae) with notes on the West African species attributed to Parennea Pilsbry, 1919

    Get PDF
    Ennea nigeriensis sp. n. is described from southeastern Nigeria on the basis of external and internal shell morphology. Following Pilsbry's formal criteria of a single palatal fold and corresponding external furrow, the new species may be assigned to Parennea. Ennea nigeriensis sp. n. exhibits substantial similarity with E. serrata, a species from Cameroon, in the cylindrical shell shape, crenulate suture, and internal shell morphology, indicating that the two species are closely related. CT scanning confirmed the presence of only a single palatal fold in E. nigeriensis sp. n. and two in E. serrata. In spite of this, the Nigerian species is provisionally assigned to Ennea rather than Parennea, suggesting that the characters used to define Ennea and Parennea are insufficient to delimit natural groups of species. The holotype of E. serrata is examined for the first time since its description in 1896 and a redescription of the species is provided based on the two shells hitherto known. Study of the original specimens recorded as Ptychotrema (Parennea) sulciferum by Degner from Liberia reveals these to belong to Ennea cf. thompsonae. The Nigerian shell recorded by van Bruggen as Ptychotrema (Parennea) aequatoriale proved to be a specimen of Ennea cf. perforata. As a result, no species attributable to Parennea now appear to be known in West Africa; in contrast, numerous species are known from central and eastern Africa

    Finite-size left-passage probability in percolation

    Full text link
    We obtain an exact finite-size expression for the probability that a percolation hull will touch the boundary, on a strip of finite width. Our calculation is based on the q-deformed Knizhnik--Zamolodchikov approach, and the results are expressed in terms of symplectic characters. In the large size limit, we recover the scaling behaviour predicted by Schramm's left-passage formula. We also derive a general relation between the left-passage probability in the Fortuin--Kasteleyn cluster model and the magnetisation profile in the open XXZ chain with diagonal, complex boundary terms.Comment: 21 pages, 8 figure

    The scleractinian <i>Agaricia undata</i> as a new host for the coral-gall crab <i>Opecarcinus hypostegus</i> at Bonaire, southern Caribbean

    Get PDF
    The Caribbean scleractinian reef coral Agaricia undata (Agariciidae) is recorded for the first time as a host of the coral-gall crab Opecarcinus hypostegus (Cryptochiridae). The identity of the crab was confirmed with the help of DNA barcoding. The association has been documented with photographs taken in situ at 25 m depth and in the laboratory. The predominantly mesophotic depth range of the host species suggests this association to be present also at greater depths. With this record, all seven Agaricia species are now listed as gall-crab hosts, together with the agariciid Helioseris cucullata. Within the phylogeny of Agariciidae, Helioseris is not closely related to Agaricia. Therefore, the association between Caribbean agariciids and their gall-crab symbionts may either have originated early in their shared evolutionary history or later as a result of host range expansion. New information on coral-associated fauna, such as what is presented here, leads to a better insight on the diversity, evolution, and ecology of coral reef biota, particularly in the Caribbean, where cryptochirids have rarely been studied.</p

    Nocturnal predation of christmas tree worms by a batwing coral crab at Bonaire (Southern Caribbean)

    Get PDF
    Christmas tree worms (Serpulidae: Spirobranchus) occur in shallow parts of coral reefs, where they live as associates of a large number of stony coral species [...

    Monte Carlo study of the hull distribution for the q=1 Brauer model

    Full text link
    We study a special case of the Brauer model in which every path of the model has weight q=1. The model has been studied before as a solvable lattice model and can be viewed as a Lorentz lattice gas. The paths of the model are also called self-avoiding trails. We consider the model in a triangle with boundary conditions such that one of the trails must cross the triangle from a corner to the opposite side. Motivated by similarities between this model, SLE(6) and critical percolation, we investigate the distribution of the hull generated by this trail (the set of points on or surrounded by the trail) up to the hitting time of the side of the triangle opposite the starting point. Our Monte Carlo results are consistent with the hypothesis that for system size tending to infinity, the hull distribution is the same as that of a Brownian motion with perpendicular reflection on the boundary.Comment: 21 pages, 9 figure
    corecore