22 research outputs found

    High cholesterol diet exacerbates blood-brain barrier disruption in LDLr–/– mice : impact on cognitive function

    Get PDF
    Background: Evidence has revealed an association between familial hypercholesterolemia and cognitive impairment. In this regard, a connection between cognitive deficits and hippocampal blood-brain barrier (BBB) breakdown was found in low-density lipoprotein receptor knockout mice (LDLr–/–), a mouse model of familial hypercholesterolemia. Objective: Herein we investigated the impact of a hypercholesterolemic diet on cognition and BBB function in C57BL/6 wild-type and LDLr–/– mice. Methods: Animals were fed with normal or high cholesterol diets for 30 days. Thus, wild-type and LDLr–/– mice were submitted to memory paradigms. Additionally, BBB integrity was evaluated in the mice’s prefrontal cortices and hippocampi. Results: A tenfold elevation in plasma cholesterol levels of LDLr–/– mice was observed after a hypercholesterolemic diet, while in wild-type mice, the hypercholesterolemic diet exposure increased plasma cholesterol levels only moderately and did not induce cognitive impairment. LDLr–/– mice presented memory impairment regardless of the diet. We observed BBB disruption as an increased permeability to sodium fluorescein in the prefrontal cortices and hippocampi and a decrease on hippocampal claudin-5 and occludin mRNA levels in both wild-type and LDLr–/– mice treated with a hypercholesterolemic diet. The LDLr–/– mice fed with a regular diet already presented BBB dysfunction. The BBB-increased leakage in the hippocampi of LDLr–/– mice was related to high microvessel content and intense astrogliosis, which did not occur in the control mice. Conclusion: Therefore, LDLr–/– mice seem to be more susceptible to cognitive impairments and BBB damage induced by exposure to a high cholesterol diet. Finally, BBB disruption appears to be a relevant event in hypercholesterolemia-induced brain alterations

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Diphenyl diselenide-modulation of macrophage activation: Down-regulation of classical and alternative activation markers

    Get PDF
    Diphenyl diselenide ((PhSe)2), a simple organoselenium compound, possesses interesting pharmacological properties that are under extensive research. As macrophages respond to microenvironmental stimuli and can display activities engaged in the initiation and the resolution of inflammation, in the present report we describe the ability of (PhSe)2 to modulate the macrophage activation. Our data indicate that (PhSe)2 could inhibit the NO production in a dose-dependent fashion in peritoneal macrophages activated by LPS or treated with vehicle alone. We could demonstrate that this effect correlated with a reduction in the expression of the inducible NO synthase in (PhSe)2-treated cells. Furthermore, (PhSe)2 suppressed the production of reactive oxygen species, diminished the activity of the arginase enzyme, and the accumulation of nitrotyrosine modified proteins in LPS-stimulated macrophages. This compound also diminished the antigen presentation capacity of classically activated macrophages, as it reduced MHCII and CD86 expression. In addition, (PhSe)2 modulated the alternative activation phenotype of macrophages. Dexamethasone-activated macrophages presented higher production of IL-10 and CD206, which were both down-regulated by the addition of (PhSe)2. These results suggest that (PhSe)2 possesses antioxidant and anti-inflammatory activities in classically-activated macrophages. We could demonstrate that (PhSe)2 can be also utilized to modulate the alternative activation phenotype of macrophages.Fil: Rupil, Lucia. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas. Universidad Católica de Córdoba. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas; ArgentinaFil: de Bem, Andreza F.. Universidade Federal de Santa Catarina; BrasilFil: Roth, German Alfredo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentin

    A High Fat/Cholesterol Diet Recapitulates Some Alzheimer's Disease-Like Features in Mice: Focus on Hippocampal Mitochondrial Dysfunction

    No full text
    Background: Ample evidence from clinical and pre-clinical studies suggests mid-life hypercholesterolemia as a risk factor for developing Alzheimer's disease (AD) at a later age. Hypercholesterolemia induced by dietary habits can lead to vascular perturbations that increase the risk of developing sporadic AD. Objective: To investigate the effects of a high fat/cholesterol diet (HFCD) as a risk factor for AD by using a rodent model of AD and its correspondent control (healthy animals). Methods: We compared the effect of a HFCD in normal mice (non-transgenic mice, NTg) and the triple transgenic mouse model of AD (3xTgAD). We evaluated cognitive performance in relation to changes in oxidative metabolism and neuron-derived nitric oxide (•NO) concentration dynamics in hippocampal slices as well as histochemical staining of markers of the neurovascular unit. Results: In NTg, the HFCD produced only moderate hypercholesterolemia but significant decline in spatial memory was observed. A tendency for decrease in •NO production was accompanied by compromised mitochondrial function with decrease in spare respiratory capacity. In 3xTgAD mice, a robust increase in plasma cholesterol levels with the HFCD did not worsen cognitive performance but did induce compromise of mitochondrial function and significantly decreased •NO production. We found increased staining of biomarkers for astrocyte endfeet and endothelial cells in 3xTgAD hippocampi, which was further increased by the HFCD. Conclusion: A short term (8 weeks) intervention with HFCD can produce an AD-like phenotype even in the absence of overt systemic hypercholesterolemia and highlights mitochondrial dysfunction as a link between hypercholesterolemia and sporadic AD.Background: Ample evidence from clinical and pre-clinical studies suggests mid-life hypercholesterolemia as a risk factor for developing Alzheimer's disease (AD) at a later age. Hypercholesterolemia induced by dietary habits can lead to vascular perturbations that increase the risk of developing sporadic AD. Objective: To investigate the effects of a high fat/cholesterol diet (HFCD) as a risk factor for AD by using a rodent model of AD and its correspondent control (healthy animals). Methods: We compared the effect of a HFCD in normal mice (non-transgenic mice, NTg) and the triple transgenic mouse model of AD (3xTgAD). We evaluated cognitive performance in relation to changes in oxidative metabolism and neuron-derived nitric oxide (•NO) concentration dynamics in hippocampal slices as well as histochemical staining of markers of the neurovascular unit. Results: In NTg, the HFCD produced only moderate hypercholesterolemia but significant decline in spatial memory was observed. A tendency for decrease in •NO production was accompanied by compromised mitochondrial function with decrease in spare respiratory capacity. In 3xTgAD mice, a robust increase in plasma cholesterol levels with the HFCD did not worsen cognitive performance but did induce compromise of mitochondrial function and significantly decreased •NO production. We found increased staining of biomarkers for astrocyte endfeet and endothelial cells in 3xTgAD hippocampi, which was further increased by the HFCD. Conclusion: A short term (8 weeks) intervention with HFCD can produce an AD-like phenotype even in the absence of overt systemic hypercholesterolemia and highlights mitochondrial dysfunction as a link between hypercholesterolemia and sporadic AD

    Impaired adult hippocampal neurogenesis in a mouse model of familial hypercholesterolemia: a role for the LDL receptor and cholesterol metabolism in adult neural precursor cells

    No full text
    Objective: In familial hypercholesterolemia (FH), mutations in the low-density lipoprotein (LDL) receptor (LDLr) gene result in increased plasma LDL cholesterol. Clinical and preclinical studies have revealed an association between FH and hippocampus-related memory and mood impairment. We here asked whether hippocampal pathology in FH might be a consequence of compromised adult hippocampal neurogenesis.Methods: We evaluated hippocampus-dependent behavior and neurogenesis in adult C57BU6JRj and LDLr (-/-) mice. We investigated the effects of elevated cholesterol and the function of LDLr in neural precursor cells (NPC) isolated from adult C57BU6JRj mice in vitro.Results: Behavioral tests revealed that adult LDLr -/- mice showed reduced performance in a dentate gyrus (DG)-dependent metric change task. This phenotype was accompanied by a reduction in cell proliferation and adult neurogenesis in the DG of LDLr (-/-) mice, suggesting a potential direct impact of LDLr mutation on NPC. Exposure of NPC to LDL as well as LDLr gene knockdown reduced proliferation and disrupted transcriptional activity of genes involved in endogenous cholesterol synthesis and metabolism. The LDL treatment also induced an increase in intracellular lipid storage. Functional analysis of differentially expressed genes revealed parallel modulation of distinct regulatory networks upon LDL treatment and LDLr knockdown.Conclusions: Together, these results suggest that high LDL levels and a loss of LDLr function, which are characteristic to individuals with FH, might contribute to a disease-related impairment in adult hippocampal neurogenesis and, consequently, cognitive functions. (C) 2019 The Authors. Published by Elsevier GmbH

    Hippocampal Function Is Impaired by a Short-Term High-Fat Diet in Mice : Increased Blood-Brain Barrier Permeability and Neuroinflammation as Triggering Events

    No full text
    Worldwide, and especially in Western civilizations, most of the staple diets contain high amounts of fat and refined carbohydrates, leading to an increasing number of obese individuals. In addition to inducing metabolic disorders, energy dense food intake has been suggested to impair brain functions such as cognition and mood control. Here we demonstrate an impaired memory function already 3 days after the start of a high-fat diet (HFD) exposure, and depressive-like behavior, in the tail suspension test, after 5 days. These changes were followed by reduced synaptic density, changes in mitochondrial function and astrocyte activation in the hippocampus. Preceding or coinciding with the behavioral changes, we found an induction of the proinflammatory cytokines TNF-alpha and IL-6 and an increased permeability of the blood-brain barrier (BBB), in the hippocampus. Finally, in mice treated with a TNF-alpha inhibitor, the behavioral and BBB alterations caused by HFD-feeding were mitigated suggesting that inflammatory signaling was critical for the changes. In summary, our findings suggest that HFD rapidly triggers hippocampal dysfunction associated with BBB disruption and neuroinflammation, promoting a progressive breakdown of synaptic and metabolic function. In addition to elucidating the link between diet and cognitive function, our results might be relevant for the comprehension of the neurodegenerative process

    Atheroprotective action of a modified organoselenium compound: in vitro evidence

    No full text
    ABSTRACT Oxidation of low-density lipoprotein (LDL) has been strongly suggested to play a significant role in the pathogenesis of atherosclerosis. Thus, reducing LDL oxidation is a potential approach to decrease the risk of the atherosclerosis. Organoselenium compounds have demonstrated promising atheroprotective properties in experimental models. Herein, we tested the in vitro atheroprotective capability of a modified organoselenium compound, Compound HBD, in protecting isolated LDL from oxidation as well as foam cells formation. Moreover, the glutathione peroxidase (GPx)-like activity of Compound HBD was analyzed in order to explore the mechanisms related to the above-mentioned protective effects. The Compound HBD in a concentration-dependent manner reduced the Cu2+-induced formation of conjugated dienes. The protein portion from LDL were also protected from Cu2+-induced oxidation. Furthermore, the Compound HBD efficiently decreased the foam cell formation in J774 macrophage cells exposed to oxidized LDL. We found that the atheroprotective effects of this compound can be, at least in part, related to its GPx-like activity. Our findings demonstrated an impressive effect of Compound HBD against LDL-induced toxicity, a further in vivo study to investigate in more detail the antioxidant and antiatherogenic effects of this compound could be considered
    corecore