121 research outputs found

    Resolving the physics of Quasar Lyα\alpha Nebulae (RePhyNe): I. Constraining Quasar host halo masses through Circumgalactic Medium kinematics

    Full text link
    Lyα\alpha nebulae ubiquitously found around z>2 quasars can supply unique constraints on the properties of the Circumgalactic Medium, such as its density distribution, provided the quasar halo mass is known. We present a new method to constrain quasar halo masses based on the line-of-sight velocity dispersion maps of Lyα\alpha nebulae. By using MUSE-like mock observations obtained from cosmological hydrodynamic simulations under the assumption of maximal quasar fluorescence, we show that the velocity dispersion radial profiles of Lyα\alpha-emitting gas are strongly determined by gravity and that they are thus self-similar with respect to halo mass when rescaled by the virial radius. Through simple analytical arguments and by exploiting the kinematics of HeII1640\.A emission for a set of observed nebulae, we show that Lyα\alpha radiative transfer effects plausibly do not change the shape of the velocity dispersion profiles but only their normalisation without breaking their self-similarity. Taking advantage of these results, we define the variable η40100140200\eta^{140-200}_{40-100} as the ratio of the median velocity dispersion in two specifically selected annuli and derive an analytical relation between η40100140200\eta^{140-200}_{40-100} and the halo mass which can be directly applied to observations. We apply our method to 37 observed quasar Lyα\alpha nebulae at 3<z<4.7 and find that their associated quasars are typically hosted by ~1012.16±0.1410^{12.16 \pm 0.14} M_{\odot} haloes independent of redshift within the explored range. This measurement, which is completely independent of clustering methods, is consistent with the lowest mass estimates based on quasar auto-correlation clustering at z~3 and with quasar-galaxies cross-correlation results.Comment: 23 pages, 13 figures, 2 tables. Accepted for publication in MNRA

    Unraveling the knots of gaseous Cosmic Web filaments at z 3 through H-alpha emission observations

    Get PDF
    Our cosmological model predicts that most of the matter in the universe is distributed in a network of filaments - the Cosmic Web - in which galaxies form and evolve. Because most of this material is very diffuse, its direct imaging has for long remained elusive, leaving many questions still open, e.g.: what are the morphological and kinematical properties of the Cosmic Web on both small (kpc) and large (Mpc) scales? How do galaxies get their gas from the Cosmic Web? Here, we tackle these questions with an innovative method to detect in emission the gaseous Cosmic Web using bright quasars as "cosmic flashlights". In particular, we propose to observe in H-alpha emission two fields at z~3 which contain the largest Cosmic Web filaments - over 4 cMpc in length - discovered so far in deep MUSE Ly-alpha emission searches around bright quasars. Because Ly-alpha is affected by radiative transfer which change both its spatial and spectral distribution, non-resonant H-alpha observations are fundamental in order to directly constrain both the filament densities and kinematics. The filament projected angular sizes are perfectly suited for NIRSpec-MOS which can trace the filaments over their full length capturing, at the same time, several embedded galaxies. Our H-alpha observations will probe structures within the filaments on scales smaller than a few physical kpc directly constraining both their density and kinematics. By relating these quantities to the kinematics and distance from associated galaxies, our result will be fundamental to informing a new generation of theoretical and numerical models in order to reveal the physics of intergalactic gas accretion and galactic outflows

    Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): Survival results from an adaptive, multiarm, multistage, platform randomised controlled trial

    Get PDF
    BACKGROUND Long-term hormone therapy has been the standard of care for advanced prostate cancer since the 1940s. STAMPEDE is a randomised controlled trial using a multiarm, multistage platform design. It recruits men with high-risk, locally advanced, metastatic or recurrent prostate cancer who are starting first-line long-term hormone therapy. We report primary survival results for three research comparisons testing the addition of zoledronic acid, docetaxel, or their combination to standard of care versus standard of care alone. METHODS Standard of care was hormone therapy for at least 2 years; radiotherapy was encouraged for men with N0M0 disease to November, 2011, then mandated; radiotherapy was optional for men with node-positive non-metastatic (N+M0) disease. Stratified randomisation (via minimisation) allocated men 2:1:1:1 to standard of care only (SOC-only; control), standard of care plus zoledronic acid (SOC + ZA), standard of care plus docetaxel (SOC + Doc), or standard of care with both zoledronic acid and docetaxel (SOC + ZA + Doc). Zoledronic acid (4 mg) was given for six 3-weekly cycles, then 4-weekly until 2 years, and docetaxel (75 mg/m(2)) for six 3-weekly cycles with prednisolone 10 mg daily. There was no blinding to treatment allocation. The primary outcome measure was overall survival. Pairwise comparisons of research versus control had 90% power at 2·5% one-sided α for hazard ratio (HR) 0·75, requiring roughly 400 control arm deaths. Statistical analyses were undertaken with standard log-rank-type methods for time-to-event data, with hazard ratios (HRs) and 95% CIs derived from adjusted Cox models. This trial is registered at ClinicalTrials.gov (NCT00268476) and ControlledTrials.com (ISRCTN78818544). FINDINGS 2962 men were randomly assigned to four groups between Oct 5, 2005, and March 31, 2013. Median age was 65 years (IQR 60-71). 1817 (61%) men had M+ disease, 448 (15%) had N+/X M0, and 697 (24%) had N0M0. 165 (6%) men were previously treated with local therapy, and median prostate-specific antigen was 65 ng/mL (IQR 23-184). Median follow-up was 43 months (IQR 30-60). There were 415 deaths in the control group (347 [84%] prostate cancer). Median overall survival was 71 months (IQR 32 to not reached) for SOC-only, not reached (32 to not reached) for SOC + ZA (HR 0·94, 95% CI 0·79-1·11; p=0·450), 81 months (41 to not reached) for SOC + Doc (0·78, 0·66-0·93; p=0·006), and 76 months (39 to not reached) for SOC + ZA + Doc (0·82, 0·69-0·97; p=0·022). There was no evidence of heterogeneity in treatment effect (for any of the treatments) across prespecified subsets. Grade 3-5 adverse events were reported for 399 (32%) patients receiving SOC, 197 (32%) receiving SOC + ZA, 288 (52%) receiving SOC + Doc, and 269 (52%) receiving SOC + ZA + Doc. INTERPRETATION Zoledronic acid showed no evidence of survival improvement and should not be part of standard of care for this population. Docetaxel chemotherapy, given at the time of long-term hormone therapy initiation, showed evidence of improved survival accompanied by an increase in adverse events. Docetaxel treatment should become part of standard of care for adequately fit men commencing long-term hormone therapy. FUNDING Cancer Research UK, Medical Research Council, Novartis, Sanofi-Aventis, Pfizer, Janssen, Astellas, NIHR Clinical Research Network, Swiss Group for Clinical Cancer Research

    Draft genomes of Amanita jacksonii, Ceratocystis albifundus, Fusarium circinatum, Huntiella omanensis, Leptographium procerum, Rutstroemia sydowiana, and Sclerotinia echinophila

    Get PDF
    The genomes of fungi provide an important resource to resolve issues pertaining to their taxonomy, biology, and evolution. The genomes of Amanita jacksonii, Ceratocystis albifundus, a Fusarium circinatum variant, Huntiella omanensis, Leptographium procerum, Sclerotinia echinophila, and Rutstroemia sydowiana are presented in this genome announcement. These seven genomes are from a number of fungal pathogens and economically important species. The genome sizes range from 27 Mb in the case of Ceratocystis albifundus to 51.9 Mb for Rutstroemia sydowiana. The latter also encodes for a predicted 17 350 genes, more than double that of Ceratocystis albifundus. These genomes will add to the growing body of knowledge of these fungi and provide a value resource to researchers studying these fungi.The US Department of Agriculture (USDA) Agricultural Research Service, grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Royal Ontario Museum to J.M.M.; Graduate Scholarships from the Consejo Nacional de Ciencia y Tecnologia (Mexico) and the University of Toronto to SSR; and a Undergraduate Student Research Award from NSERC to M.S. Financial support was provided by members of the Tree Protection Cooperative Program (TPCP), the Department of Science and Technology (DST)/ National Research Foundation (NRF) Centre of Excellence in Tree Health Biotechnology, and the Genomics Research Institute of the University of Pretoria. This project was supported by multiple grants from the NRF, South Africa, including the grant specific unique reference number (UID) 83924.http://www.imafungus.orgam201

    2021 Taxonomic Update Of Phylum Negarnaviricota (Riboviria: Orthornavirae), Including The Large Orders Bunyavirales And Mononegavirales:Negarnaviricota Taxonomy Update 2021

    Get PDF

    Draft genome sequence of Annulohypoxylon stygium, Aspergillus mulundensis, Berkeleyomyces basicola (syn. Thielaviopsis basicola), Ceratocystis smalleyi, two Cercospora beticola strains, Coleophoma cylindrospora, Fusarium fracticaudum, Phialophora cf. hyalina, and Morchella septimelata

    Get PDF
    Draft genomes of the species Annulohypoxylon stygium, Aspergillus mulundensis, Berkeleyomyces basicola (syn. Thielaviopsis basicola), Ceratocystis smalleyi, two Cercospora beticola strains, Coleophoma cylindrospora, Fusarium fracticaudum, Phialophora cf. hyalina and Morchella septimelata are presented. Both mating types (MAT1-1 and MAT1-2) of Cercospora beticola are included. Two strains of Coleophoma cylindrospora that produce sulfated homotyrosine echinocandin variants, FR209602, FR220897 and FR220899 are presented. The sequencing of Aspergillus mulundensis, Coleophoma cylindrospora and Phialophora cf. hyalina has enabled mapping of the gene clusters encoding the chemical diversity from the echinocandin pathways, providing data that reveals the complexity of secondary metabolism in these different species. Overall these genomes provide a valuable resource for understanding the molecular processes underlying pathogenicity (in some cases), biology and toxin production of these economically important fungi

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S
    corecore