12 research outputs found

    Role of fronts in the formation of Arabian Sea barrier layers during summer monsoon

    No full text
    The barrier layer (BL) - a salinity stratification embedded in the upper warm layer - is a common feature of the tropical oceans. In the northern Indian Ocean, it has the potential to significantly alter the air-sea interactions. In the present paper, we investigate the spatio-temporal structure of BL in the Arabian Sea during summer monsoon. This season is indeed a key component of the Asian climate. Based on a comprehensive dataset of Conductivity-Temperature-Depth (CTD) and Argo in situ hydrographic profiles, we find that a BL exists in the central Arabian Sea during summer. However, it is highly heterogeneous in space, and intermittent, with scales of about similar to 100 km or less and a couple of weeks. The BL patterns appear to be closely associated to the salinity front separating two water masses (Arabian Sea High Salinity Water in the Northern and Eastern part of the basin, fresher Bay of Bengal Water to the south and to the west). An ocean general circulation model is used to infer the formation mechanism of the BL. It appears that thick (more than 40 m) BL patterns are formed at the salinity front by subduction of the saltier water mass under the fresher one in an area of relatively uniform temperature. Those thick BL events, with variable position and timing, result in a broader envelope of thinner BL in climatological conditions. However, the individual patterns of BL are probably too much short-lived to significantly affect the monsoonal air-sea interactions

    Space-based observations of surface signatures in the wakes of the 2018 Eastern Pacific tropical cyclones

    No full text
    In this section, a new focus is given on the ocean response induced by Tropical Cyclones. Tropical Cyclones are among the most devastating and destructive natural hazards. Unfortunately, predicting the intensity and evolution of such individual event is still extremely difficult, owing to various internal and environmental factors, including interactions with the ocean interior. In that context, multiple satellite remote sensing observations are essential, and today, combined with denser ARGO interior measurements, the upper ocean responses to moving tropical cyclones can be more efficiently captured and monitored

    Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles

    Get PDF
    A new 0.5° resolution Mediterranean climatology of the mixed layer depth based on individual profiles of temperature and salinity has been constructed. The criterion selected is a threshold value of temperature from a near-surface value at 10 m depth, mainly derived by a method applied on the global (de Boyer Montégut et al., 2004 dBM04). With respect to dBM04, the main differences reside in the absence of spatial interpolation of the final fields and in the improved spatial resolution. These changes to the method are necessary to reproduce the Mediterranean mixed layer's behavior. In the derived climatological maps, the most relevant features of the basin surface circulation are reproduced, as well as the areas prone of the deep water formation are clearly identified. Finally, the role of density in the definition of the mixed layer's differing behaviors between the oriental and the occidental regions of the basin is presented
    corecore