794 research outputs found

    A modified theory of gravity with torsion and its applications to cosmology and particle physics

    Full text link
    In this paper we consider the most general least-order derivative theory of gravity in which not only curvature but also torsion is explicitly present in the Lagrangian, and where all independent fields have their own coupling constant: we will apply this theory to the case of ELKO fields, which is the acronym of the German \textit{Eigenspinoren des LadungsKonjugationsOperators} designating eigenspinors of the charge conjugation operator, and thus they are a Majorana-like special type of spinors; and to the Dirac fields, the most general type of spinors. We shall see that because torsion has a coupling constant that is still undetermined, the ELKO and Dirac field equations are endowed with self-interactions whose coupling constant is undetermined: we discuss different applications according to the value of the coupling constants and the different properties that consequently follow. We highlight that in this approach, the ELKO and Dirac field's self-interactions depend on the coupling constant as a parameter that may even make these non-linearities manifest at subatomic scales.Comment: 21 page

    Patients with primary immunodeficiencies are a reservoir of poliovirus and a risk to polio eradication

    Get PDF
    ABSTARCT: Immunodeficiency-associated vaccine-derived polioviruses (iVDPVs) have been isolated from primary immunodeficiency (PID) patients exposed to oral poliovirus vaccine (OPV). Patients may excrete poliovirus strains for months or years; the excreted viruses are frequently highly divergent from the parental OPV and have been shown to be as neurovirulent as wild virus. Thus, these patients represent a potential reservoir for transmission of neurovirulent polioviruses in the post-eradication era. In support of WHO recommendations to better estimate the prevalence of poliovirus excreters among PIDs and characterize genetic evolution of these strains, 635 patients including 570 with primary antibody deficiencies and 65 combined immunodeficiencies were studied from 13 OPV-using countries. Two stool samples were collected over 4 days, tested for enterovirus, and the poliovirus positive samples were sequenced. Thirteen patients (2%) excreted polioviruses, most for less than 2 months following identification of infection. Five (0.8%) were classified as iVDPVs (only in combined immunodeficiencies and mostly poliovirus serotype 2). Non-polio enteroviruses were detected in 30 patients (4.7%). Patients with combined immunodeficiencies had increased risk of delayed poliovirus clearance compared to primary antibody deficiencies. Usually, iVDPV was detected in subjects with combined immunodeficiencies in a short period of time after OPV exposure, most for less than 6 months. Surveillance for poliovirus excretion among PID patients should be reinforced until polio eradication is certified and the use of OPV is stopped. Survival rates among PID patients are improving in lower and middle income countries, and iVDPV excreters are identified more frequently. Antivirals or enhanced immunotherapies presently in development represent the only potential means to manage the treatment of prolonged excreters and the risk they present to the polio endgame. Keywords: Poliovirus eradication, Immunodeficiency-associated vaccine-derived polioviruses, Oral poliovirus vaccine, Humoral immunodeficiency, Combined immunodeficiency, Primary immunodeficienc

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc
    corecore