1,687 research outputs found

    Indirect Signals from Dark Matter in Split Supersymmetry

    Full text link
    We study the possibilities for the indirect detection of dark matter in Split Supersymmetry from gamma-rays, positrons, and antiprotons. The most promising signal is the gamma-ray line, which may be observable at the next generation of detectors. For certain halo profiles and a high mass neutralino, the line can even be visible in current experiments. The continuous gamma-ray signal may be observable, if there is a central spike in the galactic halo density. The signals are found to be similar to those in MSSM models. These indirect signals complement other experiments, being most easily observable for regions of parameter space, such as heavy wino and higgsino dominated neutralinos, which are least accessible for direct detection and accelerator searches.Comment: 10 pages, 5 figures; experimental sensitivities added to figure 2, revised version to appear in Phys. Rev.

    About the morphology of dwarf spheroidal galaxies and their dark matter content

    Get PDF
    The morphological properties of the Carina, Sculptor and Fornax dwarfs are investigated using new wide field data with a total area of 29 square degrees. The stellar density maps are derived, hinting that Sculptor possesses tidal tails indicating interaction with the Milky Way. Contrary to previous studies we cannot find any sign of breaks in the density profiles for the Carina and Fornax dwarfs. The possible existence of tidal tails in Sculptor and of King limiting radii in Fornax and Carina are used to derive global M/L ratios, without using kinematic data. By matching those M/L ratios to kinematically derived values we are able to constrain the orbital parameters of the three dwarfs. Fornax cannot have M/L smaller than 3 and must be close to its perigalacticon now. The other extreme is Sculptor that needs to be on an orbit with an eccentricity bigger than 0.5 to be able to form tidal tails despite its kinematic M/L.Comment: 9 pages, 7 figures, accepted by A&

    Star Formation-Regulated Growth of Black Holes in Protogalactic Spheroids

    Get PDF
    The observed relation between central black hole mass and spheroid velocity dispersion is interpreted in terms of a self-regulation model that incorporates a viscous Keplerian accretion disk to feed the black hole, embedded in a massive, self-gravitating star forming disk that eventually populates the spheroid. The model leads to a constant ratio between black hole mass and spheroid mass which is equal to the inverse of the critical Reynolds number for the onset of turbulence in the accretion disk surrounding the central black hole. Applying the fundamental plane correlation for spheroids, we find that the black hole mass has a power-law dependence on the spheroid velocity dispersion with a slope in the range of 4-5. We explain the larger scatter in the Magorrian relation with respect to the black hole mass-spheroid velocity dispersion relationship as a result of secular evolution of the spheroid that primarily affects its luminosity and to a much lesser extent its velocity dispersion.Comment: 12 pages, no figures, submitted to ApJ Letter

    Time-resolved infrared emission from radiation-driven central obscuring structures in Active Galactic Nuclei

    Full text link
    The central engines of Seyfert galaxies are thought to be enshrouded by geometrically thick gas and dust structures. In this article, we derive observable properties for a self-consistent model of such toroidal gas and dust distributions, where the geometrical thickness is achieved and maintained with the help of X-ray heating and radiation pressure due to the central engine. Spectral energy distributions (SEDs) and images are obtained with the help of dust continuum radiative transfer calculations with RADMC-3D. For the first time, we are able to present time-resolved SEDs and images for a physical model of the central obscurer. Temporal changes are mostly visible at shorter wavelengths, close to the combined peak of the dust opacity as well as the central source spectrum and are caused by variations in the column densities of the generated outflow. Due to the three-component morphology of the hydrodynamical models -- a thin disc with high density filaments, a surrounding fluffy component (the obscurer) and a low density outflow along the rotation axis -- we find dramatic differences depending on wavelength: whereas the mid-infrared images are dominated by the elongated appearance of the outflow cone, the long wavelength emission is mainly given by the cold and dense disc component. Overall, we find good agreement with observed characteristics, especially for those models, which show clear outflow cones in combination with a geometrically thick distribution of gas and dust, as well as a geometrically thin, but high column density disc in the equatorial plane.Comment: 16 pages, 12 figures, accepted for publication in MNRA

    Experimental determination of the effective strong coupling constant

    Get PDF
    We present a first attempt to experimentally extract an effective strong coupling constant that we define to be a low Q2 extension of a previous definition by S. Brodsky et al. following an initial work of G. Grunberg. Using Jefferson Lab data and sum rules, we establish its Q2-behavior over the complete Q2-range. The result is compared to effective coupling constants inferred from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constants and the calculations is not established it is interesting to note that their behaviors are similar.Comment: Published in Physics Letters B 650 4 24

    A Fast Algorithm for Solving the Poisson Equation on a Nested Grid

    Full text link
    We present a numerical method for solving the Poisson equation on a nested grid. The nested grid consists of uniform grids having different grid spacing and is designed to cover the space closer to the center with a finer grid. Thus our numerical method is suitable for computing the gravity of a centrally condensed object. It consists of two parts: the difference scheme for the Poisson equation on the nested grid and the multi-grid iteration algorithm. It has three advantages: accuracy, fast convergence, and scalability. First it computes the gravitational potential of a close binary accurately up to the quadraple moment, even when the binary is resolved only in the fine grids. Second residual decreases by a factor of 300 or more by each iteration. We confirmed experimentally that the iteration converges always to the exact solution of the difference equation. Third the computation load of the iteration is proportional to the total number of the cells in the nested grid. Thus our method gives a good solution at the minimum expense when the nested grid is large. The difference scheme is applicable also to the adaptive mesh refinement in which cells of different sizes are used to cover a domain of computation.Comment: 22 pages 21 figures. To appear in Ap

    Kinematics of massive star ejecta in the Milky Way as traced by 26^26Al

    Get PDF
    Context. Massive stars form in groups and their winds and supernova explosions create superbubbles up to kpc in size. The fate of their ejecta is of vital importance for the dynamics of the interstellar medium, for chemical evolution models, and the chemical enrichment of galactic halos and the intergalactic medium. However, ejecta kinematics and the characteristic scales in space and time have not been explored in great detail beyond ~10 Ka. Aims: Through measurement of radioactive 26Al with its decay time constant at ~106 years, we aim to trace the kinematics of cumulative massive-star and supernova ejecta independent of the uncertain gas parameters over million-year time scales. Our goal is to identify the mixing time scale and the spatio-kinematics of such ejecta from the pc to kpc scale in our Milky Way. Methods: We use the SPI spectrometer on the INTEGRAL observatory and its observations along the Galactic ridge to trace the detailed line shape systematics of the 1808.63 keV gamma-ray line from 26Al decay. We determine line centroids and compare these to Doppler shift expectations from large-scale systematic rotation around the Galaxy centre, as observed in other Galactic objects. Results: We measure the radial velocities of gas traced by 26Al, averaged over the line of sight, as a function of Galactic longitude. We find substantially higher velocities than expected from Galactic rotation, the average bulk velocity being ~200 km s-1 larger than predicted from Galactic rotation. The observed radial velocity spread implies a Doppler broadening of the gamma-ray line that is consistent with our measurements of the overall line width. We can reproduce the observed characteristics with 26Al sources located along the inner spiral arms, when we add a global blow-out preference into the forward direction away from arms into the inter-arm region, as is expected when massive stars are offset towards the spiral-arm leading edge. With the known connection of superbubbles to the gaseous halo, this implies angular-momentum transfer in the disk-halo system and consequently also radial gas flows. The structure of the interstellar gas above the disk affects how ionizing radiation may escape and ionize intergalactic gas.Peer reviewe

    Global Nonradial Instabilities of Dynamically Collapsing Gas Spheres

    Full text link
    Self-similar solutions provide good descriptions for the gravitational collapse of spherical clouds or stars when the gas obeys a polytropic equation of state, p=Kργp=K\rho^\gamma (with γ4/3\gamma\le 4/3). We study the behaviors of nonradial perturbations in the similarity solutions of Larson, Penston and Yahil, which describe the evolution of the collapsing cloud prior to core formation. Our global stability analysis reveals the existence of unstable bar-modes (l=2l=2) when γ1.09\gamma\le 1.09. In particular, for the collapse of isothermal spheres, which applies to the early stages of star formation, the l=2l=2 density perturbation relative to the background, δρ(r,t)/ρ(r,t)\delta\rho({\bf r},t)/\rho(r,t), increases as (t0t)0.352ρc(t)0.176(t_0-t)^{-0.352}\propto \rho_c(t)^{0.176}, where t0t_0 denotes the epoch of core formation, and ρc(t)\rho_c(t) is the cloud central density. Thus, the isothermal cloud tends to evolve into an ellipsoidal shape (prolate bar or oblate disk, depending on initial conditions) as the collapse proceeds. In the context of Type II supernovae, core collapse is described by the γ1.3\gamma\simeq 1.3 equation of state, and our analysis indicates that there is no growing mode (with density perturbation) in the collapsing core before the proto-neutron star forms, although nonradial perturbations can grow during the subsequent accretion of the outer core and envelope onto the neutron star. We also carry out a global stability analysis for the self-similar expansion-wave solution found by Shu, which describes the post-collapse accretion (``inside-out'' collapse) of isothermal gas onto a protostar. We show that this solution is unstable to perturbations of all ll's, although the growth rates are unknown.Comment: 28 pages including 7 ps figures; Minor changes in the discussion; To be published in ApJ (V.540, Sept.10, 2000 issue

    Cooling, Gravity and Geometry: Flow-driven Massive Core Formation

    Get PDF
    We study numerically the formation of molecular clouds in large-scale colliding flows including self-gravity. The models emphasize the competition between the effects of gravity on global and local scales in an isolated cloud. Global gravity builds up large-scale filaments, while local gravity -- triggered by a combination of strong thermal and dynamical instabilities -- causes cores to form. The dynamical instabilities give rise to a local focusing of the colliding flows, facilitating the rapid formation of massive protostellar cores of a few 100 M_\odot. The forming clouds do not reach an equilibrium state, though the motions within the clouds appear comparable to ``virial''. The self-similar core mass distributions derived from models with and without self-gravity indicate that the core mass distribution is set very early on during the cloud formation process, predominantly by a combination of thermal and dynamical instabilities rather than by self-gravity.Comment: 13 pages, 12 figures, accepted by Ap
    corecore