65 research outputs found

    The Static Future of the International Financial System

    Get PDF
    The international financial system is all the participating economies of the world acting independently, yet bound together by the need for trade and currency exchange. The international floating exchange rate system has been the international financial system since its inception in 1973. Since the inception of the floating exchange rate system there has been constant criticism and questioning over whether it is the best international financial model for the present and future. The purpose of this thesis is to critically examine the history of the international financial system and determine what kind of international system best meets the need of the globally interdependent world moving forward. The history of international finance has been characterized by three major international monetary systems. The gold standard, Bretton Woods, and international floating system all have strengths, weaknesses and unique differences that this thesis seeks to analyze. An object of this thesis is to identify how a desirable international monetary system might look and function in the future. This thesis will examine a number of problems that have plagued the international monetary system and how those difficulties might be remedied in the future

    REDUCED CARDIOTOXICITY AND INCREASED CYTOTOXICITY IN A NOVEL ANTHRACYCLINE ANALOG, 4'-AMINO-3'-HYDROXY-DOXORUBICIN

    Get PDF
    The acute and chronic cardiotoxicity and cytotoxicity of the novel doxorubicin (DXR) derivative 4'-amino-3'-hydroxy-DXR were compared with those of 4'-deoxy-DXR and DXR. In the acute cardiotoxicity study, the ECG and hemodynamic changes recorded in anesthetized rats that had been treated i.v. with 10 mg/kg 4'-amino-3'-hydroxy-DXR or 8.6 mg/kg 4'-deoxy-DXR were significantly less severe than those caused by 13 mg/kg DXR. In the chronic cardiotoxicity study, rats received 3 weekly i.v. injections of 3 mg/kg DXR, 3 mg/kg 4'-amino-3'-hydroxy-DXR, or 2 mg/kg 4'-deoxy-DXR during the first 14 days of the study and were observed for an additional 35-day period. DXR induced severe cardiomyopathy that was characterized by ECG changes in vivo (S-alpha-T-segment widening and T-wave flattening) and by impairment of the contractile responses (F(max), +/- dF/dt(max)) to adrenaline of hearts isolated from treated animals. 4'-Deoxy-DXR caused a progressive enlargement of the S-alpha-T segment in vivo and a significant impairment of the - dF/dt(max) value in vitro, which were less severe than those produced by DXR. The least cardiotoxic drug was 4'-amino-3'-hydroxy-DXR, which induced minor ECG changes without causing significant alterations in the contractile responses of isolated hearts to adrenaline. On the basis of the drug concentration required to inhibit 50% of the colony formation (IC50) of cell lines in vitro, 4'-amino-3'-hydroxy-DXR was less active than 4'-deoxy-DXR but at least twice as active as DXR against human cancer and murine transformed cell lines. These data indicate that 4'-amino-3'-hydroxy-DXR is significantly less cardiotoxic and more cytotoxic than DXR

    A novel method for engineering autologous non-thrombogenic in situ tissue-engineered blood vessels for arteriovenous grafting

    Get PDF
    The durability of prosthetic arteriovenous (AV) grafts for hemodialysis access is low, predominantly due to stenotic lesions in the venous outflow tract and infectious complications. Tissue engineered blood vessels (TEBVs) might offer a tailor-made autologous alternative for prosthetic grafts. We have designed a method in which TEBVs are grown in vivo, by utilizing the foreign body response to subcutaneously implanted polymeric rods in goats, resulting in the formation of an autologous fibrocellular tissue capsule (TC). One month after implantation, the polymeric rod is extracted, whereupon TCs (length 6 cm, diameter 6.8 mm) were grafted as arteriovenous conduit between the carotid artery and jugular vein of the same goats. At time of grafting, the TCs were shown to have sufficient mechanical strength in terms of bursting pressure (2382 +/- 129 mmHg), and suture retention strength (SRS: 1.97 +/- 0.49 N). The AV grafts were harvested at 1 or 2 months after grafting. In an ex vivo whole blood perfusion system, the lumen of the vascular grafts was shown to be less thrombogenic compared to the initial TCs and ePTFE grafts. At 8 weeks after grafting, the entire graft was covered with an endothelial layer and abundant elastin expression was present throughout the graft. Patency at 1 and 2 months was comparable with ePTFE AV-grafts. In conclusion, we demonstrate the remodeling capacity of cellularized in vivo engineered TEBVs, and their potential as autologous alternative for prosthetic vascular grafts.Vascular Surger

    Apolipoprotein L genes are novel mediators of inflammation in beta cells

    Get PDF
    Aims/hypothesisInflammation induces beta cell dysfunction and demise but underlying molecular mechanisms remain unclear. The apolipoprotein L (APOL) family of genes has been associated with innate immunity and apoptosis in non-pancreatic cell types, but also with metabolic syndrome and type 2 diabetes mellitus. Here, we hypothesised that APOL genes play a role in inflammation-induced beta cell damage.MethodsWe used single-cell transcriptomics datasets of primary human pancreatic islet cells to study the expression of APOL genes upon specific stress conditions. Validation of the findings was carried out in EndoC-βH1 cells and primary human islets. Finally, we performed loss- and gain-of-function experiments to investigate the role of APOL genes in beta cells.ResultsAPOL genes are expressed in primary human beta cells and APOL1, 2 and 6 are strongly upregulated upon inflammation via the Janus kinase (JAK)−signal transducer and activator of transcription (STAT) pathway. APOL1 overexpression increases endoplasmic reticulum stress while APOL1 knockdown prevents cytokine-induced beta cell death and interferon-associated response. Furthermore, we found that APOL genes are upregulated in beta cells from donors with type 2 diabetes compared with donors without diabetes mellitus.Conclusions/interpretationAPOLs are novel regulators of islet inflammation and may contribute to beta cell damage during the development of diabetes.Therapeutic cell differentiatio

    Genome-wide association study identifies a novel locus contributing to type 2 diabetes susceptibility in Sikhs of Punjabi origin from India.

    Get PDF
    We performed a genome-wide association study (GWAS) and a multistage meta-analysis of type 2 diabetes (T2D) in Punjabi Sikhs from India. Our discovery GWAS in 1,616 individuals (842 case subjects) was followed by in silico replication of the top 513 independent single nucleotide polymorphisms (SNPs) (P < 10⁻³) in Punjabi Sikhs (n = 2,819; 801 case subjects). We further replicated 66 SNPs (P < 10⁻⁴) through genotyping in a Punjabi Sikh sample (n = 2,894; 1,711 case subjects). On combined meta-analysis in Sikh populations (n = 7,329; 3,354 case subjects), we identified a novel locus in association with T2D at 13q12 represented by a directly genotyped intronic SNP (rs9552911, P = 1.82 × 10⁻⁸) in the SGCG gene. Next, we undertook in silico replication (stage 2b) of the top 513 signals (P < 10⁻³) in 29,157 non-Sikh South Asians (10,971 case subjects) and de novo genotyping of up to 31 top signals (P < 10⁻⁴) in 10,817 South Asians (5,157 case subjects) (stage 3b). In combined South Asian meta-analysis, we observed six suggestive associations (P < 10⁻⁵ to < 10⁻⁷), including SNPs at HMG1L1/CTCFL, PLXNA4, SCAP, and chr5p11. Further evaluation of 31 top SNPs in 33,707 East Asians (16,746 case subjects) (stage 3c) and 47,117 Europeans (8,130 case subjects) (stage 3d), and joint meta-analysis of 128,127 individuals (44,358 case subjects) from 27 multiethnic studies, did not reveal any additional loci nor was there any evidence of replication for the new variant. Our findings provide new evidence on the presence of a population-specific signal in relation to T2D, which may provide additional insights into T2D pathogenesis

    Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes

    Get PDF
    To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip involving 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two demonstrating sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of further common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signalling and cell cycle regulation, in diabetes pathogenesis
    corecore