138 research outputs found

    Numerical study of vortex system quantum melting

    Full text link
    We report a numerical study of the vortex system in the two dimensional II-type superconductors. We have proposed a phenomenological model that takes into account quantum fluctuations of Abrikosov's vortices. The results of the quantum Monte-Carlo simulations by the SSE algorithm show that the thermal fluctuations are dominated by quantum fluctuations at low temperatures. In particular, we demonstrate the possibility of the quantum melting transition for vortex system in the temperature region where thermal melting transition is improbable

    Blue luminescence of Au nanoclusters embedded in silica matrix

    Full text link
    Photoluminescence study using the 325 nm He-Cd excitation is reported for the Au nanoclusters embedded in SiO2 matrix. Au clusters are grown by ion beam mixing with 100 KeV Ar+ irradiation on Au [40 nm]/SiO2 at various fluences and subsequent annealing at high temperature. The blue bands above ~3 eV match closely with reported values for colloidal Au nanoclusters and supported Au nanoislands. Radiative recombination of sp electrons above Fermi level to occupied d-band holes are assigned for observed luminescence peaks. Peaks at 3.1 eV and 3.4 eV are correlated to energy gaps at the X- and L-symmetry points, respectively, with possible involvement of relaxation mechanism. The blue shift of peak positions at 3.4 eV with decreasing cluster size is reported to be due to the compressive strain in small clusters. A first principle calculation based on density functional theory using the full potential linear augmented plane wave plus local orbitals (FP-LAPW+LO) formalism with generalized gradient approximation (GGA) for the exchange correlation energy is used to estimate the band gaps at the X- and L-symmetry points by calculating the band structures and joint density of states (JDOS) for different strain values in order to explain the blueshift of ~0.1 eV with decreasing cluster size around L-symmetry point.Comment: 13 pages, 7 Figures Only in PDF format; To be published in J. of Chem. Phys. (Tentative issue of publication 8th December 2004

    Universal SSE algorithm for Heisenberg model and Bose Hubbard model with interaction

    Full text link
    We propose universal SSE method for simulation of Heisenberg model with arbitrary spin and Bose Hubbard model with interaction. We report on the first calculations of soft-core bosons with interaction by the SSE method. Moreover we develop a simple procedure for increase efficiency of the algorithm. From calculation of integrated autocorrelation times we conclude that the method is efficient for both models and essentially eliminates the critical slowing down problem.Comment: 6 pages, 5 figure

    poST

    Get PDF
    Publisher Copyright: AuthorThis paper presents the core concepts for the poST language - a process-oriented extension of the IEC 61131-3 Structured Text (ST) language which intends to provide a conceptual consistency of the PLC source code with technological description of the plant operating procedure. The poST can be seamlessly used as a textual programming language for complex PLC software in the context of IEC 61131-3 (3rd Edition). The language combines the advantages of FSM-based programming with the conventional syntax of the ST language which would facilitate its adoption. The poST language assumes that a poST-program is a set of weakly connected concurrent processes, structurally and functionally corresponding to the technological description of the plant. Each process is specified by a sequential set of states. The states are specified by a set of the ST constructs, extended by TIMEOUT operation, SET STATE operation, and START / STOP / check state operations to communicate with other processes. The paper describes the basic syntax of the poST language, demonstrates the usage of the poST language by developing control software for an elevator, and compares the development in poST with pure Structured Text.Peer reviewe

    Test of a simple and flexible S8 model molecule in alpha-s8 crystals

    Full text link
    Alpha S8 is the most stable crystalline form, at ambient pressure and temperature (STP), of elemental sulfur. In this paper we analyze the zero pressure low temperature part of the phase diagram of this crystal, in order to test a simple and flexible model molecule. The calculations consist in a series of molecular dynamics (MD) simulations, performed in the constant pressure- constant temperature ensemble. Our calculations show that this model, that gives good results for three crystalline phases at STP and T>~300 K, fails at low temperatures, predicting a structural phase transition at 200 K where there should be none.Comment: 6 pages, 4 figures, submitted to Chem. Phys. Lett, a figure change

    Temporal Logic for Programmable Logic Controllers

    Get PDF
    We address the formal verification of the control software of critical systems, i.e., ensuring the absence of design errors in a system with respect to requirements. Control systems are usually based on industrial controllers, also known as Programmable Logic Controllers (PLCs). A specific feature of a PLC is a scan cycle: 1) the inputs are read, 2) the PLC states change, and 3) the outputs are written. Therefore, in order to formally verify PLC, e.g., by model checking, it is necessary to describe the transition system taking into account this specificity and reason both in terms of state transitions within a cycle and in terms of larger state transitions according to the scan-cyclic semantics. We propose a formal PLC model as a hyperprocess transition system and temporal cycle-LTL logic based on LTL logic for formulating PLC property. A feature of the cycle-LTL logic is the possibility of viewing the scan cycle in two ways: as the effect of the environment (in particular, the control object) on the control system and as the effect of the control system on the environment. For both cases we introduce modified LTL temporal operators. We also define special modified LTL temporal operators to specify inside properties of scan cycles. We describe the translation of formulas of cycle-LTL into formulas of LTL, and prove its correctness. This implies the possibility ofmodel checking requirements expressed in logic cycle-LTL, by using well-known model checking tools with LTL as specification logic, e.g., Spin. We give the illustrative examples of requirements expressed in the cycle-LTL logic

    Application of Raman spectroscopy to study the inactivation process of bacterial microorganisms

    Get PDF
    Raman spectroscopy (RS) is one of the promising approaches for structural and functional studies of various biological objects, including bacterial microorganisms. Both traditional biochemical tests and genetic methods which require expensive reagents, consumables and are time-consuming are used for bacterial analysis. Spectroscopic methods are positioned as noninvasive, highly sensitive, and requiring minimal sample preparation. In this work we investigated the possibility of using the RS method using optical sensors based on gold anisotropic nanoparticles. The applicability of the method was demonstrated by studying the effect of a broad-spectrum cephalosporin antibiotic and an extract of Viburnum opulus L (VO) on Escherichia coli (E. Coli) colonies. The studies were performed by Raman spectroscopy using a Virsa spectrometer (Renishaw). Raman signal amplification was carried out using two original optical sensors proposed by the authors. To create sensors, we used a chemical method of depositing gold nanostars on APTES-modified quartz glasses and a physical method for creating sensors based on anodizing titanium surfaces. The results of the study showed the high sensitivity and information content of the proposed method. The possibility of using the RS method for studying the inactivation of bacterial microorganisms is shown. Spectral Raman bands of E. Coli were determined and identified before and after exposure to VO extract and antibiotic as a control. A decrease in the intensity of spectral modes corresponding to amino acids and purine metabolites was found in the average Raman spectrum of E. Coli after exposure to VO extract. For the first time, a study of the antimicrobial effect of an aqueous extract of VO fruits was carried out by the method of Raman scattering. It has been shown that the use of plant extracts, including VO fruit extracts, to inactivate the vital activity of bacterial colonies is a promising approach to the search for new alternative antibacterial agents. The results obtained are in good agreement with the already known scientific studies and confirm the effectiveness of the proposed method

    ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ спСциализации ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ процСссов, ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π½Π° Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ

    Get PDF
    User-friendly formal specifications and verification of parallel and distributed systems from various subject fields, such as automatic control, telecommunications, business processes, are active research topics due to its practical significance. In this paper, we present methods for the development of verification-oriented domain-specific process ontologies which are used to describe parallel and distributed systems of subject fields. One of the advantages of such ontologies is their formal semantics which make possible formal verification of the described systems. Our method is based on the abstract verification-oriented process ontology. We use two methods of specialization of the abstract process ontology. The declarative method uses the specialization of the classes of the original ontology, introduction of new declarative classes, as well as use of new axioms system, which restrict the classes and relations of the abstract ontology. The constructive method uses semantic markup and pattern matching techniques to link sublect fields with classes of the abstract process ontology. We provide detailed ontological specifications for these techniques. Our methods preserve the formal semantics of the original process ontology and, therefore, the possibility of applying formal verification methods to the specializedΒ process ontologies. We show that the constructive method is a refinement of the declarative method. The construction of ontology of the typical elements of automatic control systems illustrates our methods: we develop a declarative description of the classes and restrictions for the specialized ontology in the ProtΒ΄egΒ΄e system in the OWL language using the deriving rules written in the SWRL language and we construct the system of semantic markup templates which implements typical elements of automatic control systems.Удобная для ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»Ρ Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Π°Ρ спСцификация ΠΈ вСрификация ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈ распрСдСлённых систСм, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½Ρ‹ΠΌ областям, Ρ‚Π°ΠΊΠΈΠΌ ΠΊΠ°ΠΊ систСмы автоматичСского управлСния, Ρ‚Π΅Π»Π΅ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΈ, бизнСс-процСссы, ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Ρ‚Π΅ΠΌΠ°ΠΌΠΈ исслСдований Π² силу ΠΈΡ… практичСской значимости. Π’ этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΌΡ‹ прСдставляСм ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ спСциализированных ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½Π° Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΉ процСссов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ для описания ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈ распрСдСлСнных систСм ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½Ρ‹Ρ… областСй. Одним ΠΈΠ· прСимущСств Ρ‚Π°ΠΊΠΈΡ… ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΉ являСтся ΠΈΡ… Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Π°Ρ сСмантика, которая Π΄Π΅Π»Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ описанных систСм. Наш ΠΌΠ΅Ρ‚ΠΎΠ΄ основан Π½Π° абстрактной ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ процСссов, ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π½Π° Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ. ΠœΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ Π΄Π²Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π° спСциализации абстрактной ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ процСссов. Π”Π΅ΠΊΠ»Π°Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ спСциализации классов исходной ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ, ввСдСния Π½ΠΎΠ²Ρ‹Ρ… Π΄Π΅ΠΊΠ»Π°Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… классов, Π° Ρ‚Π°ΠΊΠΆΠ΅ систСмы аксиом Π·Π°Π΄Π°Ρ‘Ρ‚ ограничСния для классов ΠΈ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ абстрактной ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ. ΠšΠΎΠ½ΡΡ‚Ρ€ΡƒΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ сСмантичСской Ρ€Π°Π·ΠΌΠ΅Ρ‚ΠΊΠΈ ΠΈ сопоставлСния с ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡΠ²ΡΠ·Π°Ρ‚ΡŒ понятия ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½ΠΎΠΉ области с классами абстрактной ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ процСссов. ΠœΡ‹ Π΄Π°Ρ‘ΠΌ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹Π΅ онтологичСскиС спСцификации этих Ρ‚Π΅Ρ…Π½ΠΈΠΊ. Наши ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΡΠΎΡ…Ρ€Π°Π½ΡΡŽΡ‚ Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ сСмантику исходной ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ процСссов ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ примСнСния Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΊ спСциализированным онтологиям процСссов. ΠœΡ‹ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ конструктивный ΠΌΠ΅Ρ‚ΠΎΠ΄ являСтся ΡƒΡ‚ΠΎΡ‡Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄Π΅ΠΊΠ»Π°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Ρ‚ΠΈΠΏΠΎΠ²Ρ‹Ρ… элСмСнтов систСм автоматичСского управлСния ΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΡƒΠ΅Ρ‚ наши ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ΠΎ Π΄Π΅ΠΊΠ»Π°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ описаниС классов ΠΈ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ спСциализированной ΠΎΠ½Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π² систСмС Protege Π½Π° языкС OWL с использованиСм ΠΏΡ€Π°Π²ΠΈΠ» Π²Ρ‹Π²ΠΎΠ΄Π° Π½Π° языкС SWRL ΠΈ построСна систСма шаблонов сСмантичСской Ρ€Π°Π·ΠΌΠ΅Ρ‚ΠΊΠΈ, которая Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΠ΅Ρ‚ Ρ‚ΠΈΠΏΠΎΠ²Ρ‹Π΅ элСмСнты систСм автоматичСского управлСния

    First principles high throughput screening of oxynitrides for water-splitting photocatalysts

    Get PDF
    In this paper, we present a first principles high throughput screening system to search for new water-splitting photocatalysts. We use the approach to screen through nitrides and oxynitrides. Most of the known photocatalytic materials in the screened chemical space are reproduced. In addition, sixteen new materials are suggested by the screening approach as promising photocatalysts, including three binary nitrides, two ternary oxynitrides and eleven quaternary oxynitrides.United States. Dept. of Energy (contract DE-FG02-96ER4557)National Science Foundation (U.S.) (TeraGrid resources under Grant No. TG-DMR970008S)Pittsburgh Supercomputing CenterUniversity of Texas at Austin. Texas Advanced Computing CenterEni-MIT Solar Frontiers Cente

    Π’Π΅ΠΌΠΏΠΎΡ€Π°Π»ΡŒΠ½Π°Ρ Π»ΠΎΠ³ΠΈΠΊΠ° для ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… логичСских ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π»Π΅Ρ€ΠΎΠ²

    Get PDF
    We address the formal verification of the control software of critical systems, i.e., ensuring the absence of design errors in a system with respect to requirements. Control systems are usually based on industrial controllers, also known as Programmable Logic Controllers (PLCs). A specific feature of a PLC is a scan cycle: 1) the inputs are read, 2) the PLC states change, and 3) the outputs are written. Therefore, in order to formally verify PLC, e.g., by model checking, it is necessary to describe the transition system taking into account this specificity and reason both in terms of state transitions within a cycle and in terms of larger state transitions according to the scan-cyclic semantics. We propose a formal PLC model as a hyperprocess transition system and temporal cycle-LTL logic based on LTL logic for formulating PLC property. A feature of the cycle-LTL logic is the possibility of viewing the scan cycle in two ways: as the effect of the environment (in particular, the control object) on the control system and as the effect of the control system on the environment. For both cases we introduce modified LTL temporal operators. We also define special modified LTL temporal operators to specify inside properties of scan cycles. We describe the translation of formulas of cycle-LTL into formulas of LTL, and prove its correctness. This implies the possibility ofmodel checking requirements expressed in logic cycle-LTL, by using well-known model checking tools with LTL as specification logic, e.g., Spin. We give the illustrative examples of requirements expressed in the cycle-LTL logic.ΠœΡ‹ исслСдуСм Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ обСспСчСния критичСских систСм, Ρ‚. Π΅. ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΡƒ соотвСтствия функционирования ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ систСмы ΠΏΡ€Π΅Π΄ΡŠΡΠ²Π»Π΅Π½Π½Ρ‹ΠΌ трСбованиям. Π’Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΠΉ класс ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ обСспСчСния ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ для ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… логичСских ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π»Π΅Ρ€ΠΎΠ² (ΠŸΠ›Πš). ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ ΠŸΠ›Πš являСтся Ρ†ΠΈΠΊΠ» управлСния: 1) ΡΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π²Ρ…ΠΎΠ΄Ρ‹, 2) ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ состояния ΠŸΠ›Πš ΠΈ 3) Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ Π²Ρ‹Ρ…ΠΎΠ΄Ρ‹. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ ΠŸΠ›Πš Π½ΡƒΠΆΠ½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΎΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ эту спСцифику систСмы ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ свойства систСм, ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ ΠŸΠ›Πš, ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΎΠ² Π²Π½ΡƒΡ‚Ρ€ΠΈ Ρ†ΠΈΠΊΠ»Π°, Ρ‚Π°ΠΊ ΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π±ΠΎΠ»Π΅Π΅ ΠΊΡ€ΡƒΠΏΠ½Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΎΠ² Π² соотвСтствии с сСмантикой Ρ†ΠΈΠΊΠ»Π° управлСния. ΠœΡ‹ ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌ Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ модСль ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ ΠŸΠ›Πš ΠΊΠ°ΠΊ систСму ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΎΠ² гипСрпроцСссов ΠΈ Ρ‚Π΅ΠΌΠΏΠΎΡ€Π°Π»ΡŒΠ½ΡƒΡŽ Π»ΠΎΠ³ΠΈΠΊΡƒ cycle-LTL для Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ свойств ΠŸΠ›Πš. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ Π»ΠΎΠ³ΠΈΠΊΠΈ cycle-LTL являСтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ свойства систСм управлСния двояким ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: воздСйствиС окруТСния Π½Π° систСму управлСния ΠΈ воздСйствиС систСмы управлСния Π½Π° ΠΎΠΊΡ€ΡƒΠΆΠ΅Π½ΠΈΠ΅. ΠœΡ‹ опрСдСляСм ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ стандартных Ρ‚Π΅ΠΌΠΏΠΎΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠ² Π»ΠΎΠ³ΠΈΠΊΠΈ LTL для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· этих случаСв, Π° Ρ‚Π°ΠΊΠΆΠ΅ для свойств Π²Π½ΡƒΡ‚Ρ€ΠΈ Ρ†ΠΈΠΊΠ»Π° управлСния. РассмотрСны ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… Π² нашСй Π»ΠΎΠ³ΠΈΠΊΠ΅. Описана трансляция Ρ„ΠΎΡ€ΠΌΡƒΠ» cycle-LTL Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ LTL ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π΅Ρ‘ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΠΎΡΡ‚ΡŒ. Π”ΠΎΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ свСдСния Π·Π°Π΄Π°Ρ‡ΠΈ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ для Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… Π² Π»ΠΎΠ³ΠΈΠΊΠ΅ cycle-LTL, ΠΊ Π·Π°Π΄Π°Ρ‡Π΅ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… Π² стандартной Π»ΠΎΠ³ΠΈΠΊΠ΅ LTL
    • …
    corecore