130 research outputs found

    Design of the Tocilizumab in Giant Cell Arteritis Trial

    Get PDF
    Overview. The GiACTA trial is a multicenter, randomized, double-blind, and placebo-controlled study designed to test the ability of tocilizumab (TCZ), an interleukin (IL)-6 receptor antagonist, to maintain disease remission in patients with giant cell arteritis (GCA). Design:. Approximately 100 centers will enroll 250 patients with active disease. The trial consists of a 52-week blinded treatment phase followed by 104 weeks of open-label extension. Patients will be randomized into one of four groups. Group A (TCZ 162 mg weekly plus a 6-month prednisone-taper); group B (TCZ 162 mg every other week plus a 6-month prednisone-taper); group C (placebo plus a 6-month prednisone-taper); and group D (placebo plus a 12-month prednisone taper). We hypothesize that patients assigned to TCZ in addition to a 6-month prednisone course are more likely to achieve the primary efficacy endpoint of sustained remission (SR) at 52 weeks compared with those assigned to a 6-month prednisone course alone, thus potentially minimizing the long-term adverse effects of corticosteroids. Conclusion:. GiACTA will test the hypothesis that interference with IL-6 signaling exerts a beneficial effect on patients with GCA. The objective of this paper is to describe the design of the trial and address major issues related to its development

    Variants in PCSK7, PNPLA3 and TM6SF2 are risk factors for the development of cirrhosis in hereditary haemochromatosis

    Get PDF
    BACKGROUND: Cirrhosis develops in <10% of individuals homozygous for the C282Y variant in the homeostatic iron regulator (HFE) gene. Carriage of PCSK7:rs236918 is associated with an increased risk of cirrhosis in this population. AIM: To determine if genetic variants significantly associated with the risk of alcohol- and NAFLD-related cirrhosis also modulate the cirrhosis risk in C282Y homozygotes. METHODS: Variants in PCSK7, PNPLA3, TM6SF2, MBOAT7 and HSD17B13 were genotyped in 1319 C282Y homozygotes, from six European countries, of whom 171 (13.0%) had cirrhosis. Genotypic and allelic associations with the risk for developing cirrhosis were assessed, adjusting for age and sex. Fixed effects meta-analyses of the adjusted summary data for each country were performed. Post hoc association testing was undertaken in the 131 (76.6%) cases and 299 (26.0%) controls with available liver histology. RESULTS: Significant associations were observed between PCSK7:rs236918 (OR = 1.52 [95% CI 1.06-2.19]; P = 0.022; I2  = 0%); PNPLA3:rs738409 (OR = 1.60 [95% CI 1.22-2.11]; P = 7.37 × 10-4 ; I2  = 45.5%) and TM6SF2:rs58542926 (OR = 1.94 [95% CI 1.28-2.95]; P = 1.86 × 10-3 ; I2  = 0%) and the cirrhosis risk in C282Y homozygotes. These findings remained significant in the subpopulation with available liver histology. The population-attributable fractions were 5.6% for PCSK7:rs236918, 13.8% for PNPLA3:rs738409, 6.5% for TM6SF2:rs58542926 and 24.0% for carriage of all three variants combined. CONCLUSIONS: The risk of cirrhosis associated with carriage of PCSK7:rs236918 was confirmed in this much larger population of C282Y homozygotes. In addition, PNPLA3:rs738409 and TM6SF2:rs58542926 were established as significant additional risk factors. More detailed genetic testing of C282Y homozygotes would allow risk stratification and help guide future management

    Does gamma-aminobutyric acid (GABA) influence the development of chronic inflammation in rheumatoid arthritis?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have demonstrated a role for spinal p38 MAP kinase (MAPK) in the development of chronic inflammation and peripheral arthritis and a role for GABA in the inhibition of p38 MAPK mediated effects. Integrating these data suggests that GABA may play a role in downregulating mechanisms that lead to the production of proinflammatory agents such as interleukin-1, interleukin-6, and matrix metalloproteinase 3 – agents implicated in the pathogenesis of rheumatoid arthritis (RA). Genetic studies have also associated RA with members of the p38 MAPK pathway.</p> <p>Hypothesis</p> <p>We propose a hypothesis for an inefficient GABA signaling system that results in unchecked proinflammatory cytokine production via the p38 MAPK pathway. This model also supports the need for increasing research in the integration of immunology and neuroscience.</p

    A patient with hypereosinophilic syndrome that manifested with acquired hemophilia and elevated IgG4: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Hypereosinophilic syndrome is defined as a prolonged state (more than six months) of eosinophilia (greater than 1500 cells/μL), without an apparent etiology and with end-organ damage. Hypereosinophilic syndrome can cause coagulation abnormalities. Among hypereosinophilic syndrome types, the lymphocytic variant (lymphocytic hypereosinophilic syndrome) is derived from a monoclonal proliferation of T lymphocytes. Here, we describe the case of a patient with lymphocytic hypereosinophilic syndrome who presented with a coagulation abnormality. To the best of our knowledge, this is the first such report including a detailed clinical picture and temporal cytokine profile.</p> <p>Case presentation</p> <p>A 77-year-old Japanese man presented to our facility with massive hematuria and hypereosinophilia (greater than 2600 cells/μl). His eosinophilia first appeared five years earlier when he developed femoral artery occlusion. He manifested with multiple hematomas and prolonged activated partial thromboplastin time. His IgG4 level was remarkably elevated (greater than 2000 mg/dL). Polymerase chain reaction tests of peripheral blood and bone marrow identified lymphocytic hypereosinophilic syndrome. His prolonged activated partial thromboplastin time was found to be due to acquired hemophilia. Glucocorticoids suppressed both the hypereosinophilia and coagulation abnormality. However, tapering of glucocorticoids led to a relapse of the coagulation abnormality alone, without eosinophilia. Tumor necrosis factor α, interleukin-5, and/or eotaxin-3 may have caused the hypereosinophilia, and interleukin-10 was correlated with the coagulation abnormality.</p> <p>Conclusions</p> <p>To the best of our knowledge, this is the first case in which lymphocytic hypereosinophilic syndrome and IgG4-related disease have overlapped. In addition, our patient is only the second case of hypereosinophilic disease that manifested with acquired hemophilia. Our patient relapsed with the coagulation abnormality alone, without eosinophilia. This report shows that the link between eosinophilia, IgG4, and clinical manifestations is not simple and provides useful insight into the immunopathology of hypereosinophilic syndrome and IgG4-related disease.</p

    Time to focus on outcome assessment tools for childhood vasculitis

    Get PDF
    Childhood systemic vasculitides are a group of rare diseases with multi-organ involvement and potentially devastating consequences. After establishment of new classification criteria (Ankara consensus conference in 2008), it is now time to establish measures for proper definition of activity and damage in childhood primary vasculitis. By comparison to adult vasculitis, there is no consensus for indices of activity and damage assessment in childhood vasculitis. Assessment of disease activity is likely to become a major area of interest in pediatric rheumatology in the near future. After defining the classification criteria for primary systemic childhood vasculitis, the next step was to perform a validation study using the original Birmingham vasculitis activity score as well as the disease extent index to measure disease activity in childhood vasculitis. Presently, there are efforts in place to develop a pediatric vasculitis activity score. This paper reviews the current understanding about the assessment tools (i.e., clinical features, laboratory tests, radiologic assessments, etc.) widely used for evaluation of the disease activity and damage status of the children with vasculitis

    The impact of inflammation on bone mass in children

    Get PDF
    Bone is a dynamic tissue. Skeletal bone integrity is maintained through bone modeling and remodeling. The mechanisms underlying this bone mass regulation are complex and interrelated. An imbalance in the regulation of bone remodeling through bone resorption and bone formation results in bone loss. Chronic inflammation influences bone mass regulation. Inflammation-related bone disorders share many common mechanisms of bone loss. These mechanisms are ultimately mediated through the uncoupling of bone remodeling. Cachexia, physical inactivity, pro-inflammatory cytokines, as well as iatrogenic factors related to effects of immunosuppression are some of the common mechanisms. Recently, cytokine signaling through the central nervous system has been investigated for its potential role in bone mass dysregulation in inflammatory conditions. Growing research on the molecular mechanisms involved in inflammation-induced bone loss may lead to more selective therapeutic targeting of these pathological signaling pathways
    corecore