175 research outputs found

    Anticipatory Behavior of the Clonal Plant Fragaria vesca

    Get PDF
    Active foraging for patchy resources is a crucial feature of many clonal plant species. It has been recently shown that plants’ foraging for resources can be facilitated by anticipatory behavior via association of resource position with other environmental cues. We therefore tested whether clones of Fragaria vesca are able to associate and memorize positions of soil nutrients with particular light intensity, which will consequently enable them anticipating nutrients in new environment. We trained clones of F. vesca for nutrients to occur either in shade or in light. Consequently, we tested their growth response to differing light intensity in the absence of soil nutrients. We also manipulated epigenetic status of a subset of the clones to test the role of DNA methylation in the anticipatory behavior. Clones of F. vesca were able to associate presence of nutrients with particular light intensity, which enabled them to anticipate nutrient positions in the new environment based on its light intensity. Clones that had been trained for nutrients to occur in shade increased placement of ramets to shade whereas clones trained for nutrients to occur in light increased biomass of ramets in light. Our study clearly shows that the clonal plant F. vesca is able to relate two environmental factors, light and soil nutrients, and use this connection in anticipatory behavior. We conclude that anticipatory behavior can substantially improve the ability of clonal plants to utilize scarce and unevenly distributed resources

    Evolutionary rescue as a mechanism allowing a clonal grass to adapt to novel climates

    Get PDF
    Filing gaps in our understanding of species' abilities to adapt to novel climates is a key challenge for predicting future range shifts and biodiversity loss. Key knowledge gaps are related to the potential for evolutionary rescue in response to climate, especially in long-lived clonally reproducing species. We illustrate a novel approach to assess the potential for evolutionary rescue using a combination of reciprocal transplant experiment in the field to assess performance under a changing climate and independent growth chamber assays to assess growth- and physiology-related plant trait maxima and plasticities of the same clones. We use a clonal grass, Festuca rubra, as a model species. We propagated individual clones and used them in a transplant experiment across broad-scale temperature and precipitation gradients, simulating the projected direction of climate change in the region. Independent information on trait maxima and plasticities of the same clones was obtained by cultivating them in four growth chambers representing climate extremes. Plant survival was affected by interaction between plant traits and climate change, with both trait plasticities and maxima being important for adaptation to novel climates. Key traits include plasticity in extravaginal ramets, aboveground biomass, and osmotic potential. The direction of selection in response to a given climatic change detected in this study mostly contradicted the natural trait clines indicating that short-term selection pressure as identified here does not match long-term selection outcomes. Long-lived clonal species exposed to different climatic changes are subjected to consistent selection pressures on key traits, a necessary condition for adaptation to novel conditions. This points to evolutionary rescue as an important mechanism for dealing with climate change in these species. Our experimental approach may be applied also in other model systems broadening our understanding of evolutionary rescue. Such knowledge cannot be easily deduced from observing the existing field clines.publishedVersio

    Phenotypic plasticity masks range-wide genetic differentiation for vegetative but not reproductive traits in a short-lived plant

    Get PDF
    Publication history: Accepted - 19 May 2021; Published - 5 August 2021.Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait–environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.Eesti Teadusagentuur, Grant/Award Number: PRG609 and PUT1409; Academy of Finland; Natural Sciences and Engineering Research Council of Canada; Science Foundation Ireland, Grant/Award Number: 15/ERCD/2803; Spanish Ministry of Science, Innovation and Universities, Grant/Award Number: IJCI-2017- 32039; European Regional Development Fun

    Phenotypic plasticity masks range-wide genetic differentiation for vegetative but not reproductive traits in a short-lived plant

    Get PDF
    Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness

    Populační a metapopulační biologie vytrvalých rostlin v roztříštěných loukách

    No full text
    Katedra botanikyDepartment of BotanyFaculty of SciencePřírodovědecká fakult

    Seed Density Significantly Affects Species Richness and Composition in Experimental Plant Communities

    No full text
    <div><p>Studies on the importance of seed arrival for community richness and composition have not considered the number of seeds arriving and its effect on species richness and composition of natural communities is thus unknown. A series of experimental dry grassland communities were established. All communities were composed of the same 44 species in exactly the same proportions on two substrates using three different seed densities.</p> <p>The results showed that seed density had an effect on species richness only at the beginning of the experiment. In contrast, the effects on species composition persisted across the entire study period. The results do not support the prediction that due to higher competition for light in nutrient-rich soil, species richness will be the highest in the treatment with the lowest seed density. However, the prevalence of small plants in the lowest seed density supported the expectation that low seed density guarantees low competition under high soil nutrients. In the nutrient-poor soil, species richness was the highest at the medium seed density, indicating that species richness reflects the balance between competition and limitations caused by the availability of propagules or their ability to establish themselves. This medium seed density treatment also contained the smallest plants.</p> <p>The results demonstrate that future seed addition experiments need to consider the amount of seed added so that it reflects the amount of seed that is naturally found in the field. Differences in seed density, mimicking different intensity of the seed rain may also explain differences in the composition of natural communities that cannot be attributed to habitat conditions. The results also have important implications for studies regarding the consequences of habitat fragmentation suggesting that increasing fragmentation may change species compositions not only due to different dispersal abilities but also due to differential response of plants to overall seed density.</p> </div

    Effect of plant size on prevalence in low seed rain intensity in two substrates.

    No full text
    <p>Effect of plant size (3 size categories from small to large, data based on Tremlová & Münzbergová <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0046704#pone.0046704-Tremlov1" target="_blank">[53]</a>) on species response to seed rain intensity estimated by comparing species presence in pots with low and medium and high and medium seed rain intensity expressed as prevalence values P<sub>low</sub> and P<sub>high</sub> (log of the frequency in low/high relative to frequency in medium seed rain intensity treatment) in nutrient-poor A) and nutrient-rich B) substrate. The graph is based on data combined over all time periods. Positive value indicates that species of the given size category are more common in the given seed rain intensity treatment compared to medium seed rain intensity.</p
    • …
    corecore