130 research outputs found

    Evolutionarily conserved long-chain Acyl-CoA synthetases regulate membrane composition and fluidity

    Get PDF
    The human AdipoR1 and AdipoR2 proteins, as well as their C. elegans homolog PAQR-2, protect against cell membrane rigidification by exogenous saturated fatty acids by regulating phospholipid composition. Here, we show that mutations in the C. elegans gene acs-13 help to suppress the phenotypes of paqr-2 mutant worms, including their characteristic membrane fluidity defects. acs-13 encodes a homolog of the human acyl-CoA synthetase ACSL1, and localizes to the mitochondrial membrane where it likely activates long chains fatty acids for import and degradation. Using siRNA combined with lipidomics and membrane fluidity assays (FRAP and Laurdan dye staining) we further show that the human ACSL1 potentiates lipotoxicity by the saturated fatty acid palmitate: silencing ACSL1 protects against the membrane rigidifying effects of palmitate and acts as a suppressor of AdipoR2 knockdown, thus echoing the C. elegans findings. We conclude that acs-13 mutations in C. elegans and ACSL1 knockdown in human cells prevent lipotoxicity by promoting increased levels of polyunsaturated fatty acid-containing phospholipids.Peer reviewe

    The rph1 Gene Is a Common Contributor to the Evolution of Phosphine Resistance in Independent Field Isolates of Rhyzopertha Dominica

    Get PDF
    Phosphine is the only economically viable fumigant for routine control of insect pests of stored food products, but its continued use is now threatened by the world-wide emergence of high-level resistance in key pest species. Phosphine has a unique mode of action relative to well-characterised contact pesticides. Similarly, the selective pressures that lead to resistance against field sprays differ dramatically from those encountered during fumigation. The consequences of these differences have not been investigated adequately. We determine the genetic basis of phosphine resistance in Rhyzopertha dominica strains collected from New South Wales and South Australia and compare this with resistance in a previously characterised strain from Queensland. The resistance levels range from 225 and 100 times the baseline response of a sensitive reference strain. Moreover, molecular and phenotypic data indicate that high-level resistance was derived independently in each of the three widely separated geographical regions. Despite the independent origins, resistance was due to two interacting genes in each instance. Furthermore, complementation analysis reveals that all three strains contain an incompletely recessive resistance allele of the autosomal rph1 resistance gene. This is particularly noteworthy as a resistance allele at rph1 was previously proposed to be a necessary first step in the evolution of high-level resistance. Despite the capacity of phosphine to disrupt a wide range of enzymes and biological processes, it is remarkable that the initial step in the selection of resistance is so similar in isolated outbreaks

    Knocking-Down Cyclin A2 by siRNA Suppresses Apoptosis and Switches Differentiation Pathways in K562 Cells upon Administration with Doxorubicin

    Get PDF
    Cyclin A2 is critical for the initiation of DNA replication, transcription and cell cycle regulation. Cumulative evidences indicate that the deregulation of cyclin A2 is tightly linked to the chromosomal instability, neoplastic transformation and tumor proliferation. Here we report that treatment of chronic myelogenous leukaemia K562 cells with doxorubicin results in an accumulation of cyclin A2 and follows by induction of apoptotic cell death. To investigate the potential preclinical relevance, K562 cells were transiently transfected with the siRNA targeting cyclin A2 by functionalized single wall carbon nanotubes. Knocking down the expression of cyclin A2 in K562 cells suppressed doxorubicin-induced growth arrest and cell apoptosis. Upon administration with doxorubicin, K562 cells with reduced cyclin A2 showed a significant decrease in erythroid differentiation, and a small fraction of cells were differentiated along megakaryocytic and monocyte-macrophage pathways. The results demonstrate the pro-apoptotic role of cyclin A2 and suggest that cyclin A2 is a key regulator of cell differentiation. To the best of our knowledge, this is the first report that knocking down expression of one gene switches differentiation pathways of human myeloid leukemia K562 cells

    The Homeobox Protein CEH-23 Mediates Prolonged Longevity in Response to Impaired Mitochondrial Electron Transport Chain in C. elegans

    Get PDF
    Recent findings indicate that perturbations of the mitochondrial electron transport chain (METC) can cause extended longevity in evolutionarily diverse organisms. To uncover the molecular basis of how altered METC increases lifespan in C. elegans, we performed an RNAi screen and revealed that three predicted transcription factors are specifically required for the extended longevity of mitochondrial mutants. In particular, we demonstrated that the nuclear homeobox protein CEH-23 uniquely mediates the longevity but not the slow development, reduced brood size, or resistance to oxidative stress associated with mitochondrial mutations. Furthermore, we showed that ceh-23 expression levels are responsive to altered METC, and enforced overexpression of ceh-23 is sufficient to extend lifespan in wild-type background. Our data point to mitochondria-to-nucleus communications to be key for longevity determination and highlight CEH-23 as a novel longevity factor capable of responding to mitochondrial perturbations. These findings provide a new paradigm for how mitochondria impact aging and age-dependent diseases

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Mitochondrial Phosphine Toxicity and the Physiology and Genetics of Longevity in Caenorhabditis elegans

    No full text
    • …
    corecore