276 research outputs found

    Does the geoid drift west?

    Get PDF
    In 1970 Hide and Malin noted a correlation of about 0.8 between the geoid and the geomagnetic potential at the Earth's surface when the latter is rotated eastward in longitude by about 160 degrees and the spherical harmonic expansions of both functions are truncated at degree 4. From a century of magnetic observatory data, Hide and Malin inferred an average magnetic westward drift rate of about 0.27 degrees/year. They attributed the magnetic-gravitational correlation to a core event at about 1350 A.D. which impressed the mantle's gravity pattern at long wavelengths onto the core motion and the resulting magnetic field. The impressed pattern was then carried westward 160 degrees by the nsuing magnetic westward drift. An alternative possibility is some sort of steady physical coupling between the magnetic and gravitational fields (perhaps migration of Hide's bumps on the core-mantle interface). This model predicts that the geoid will drift west at the magnetic rate. On a rigid earth, the resulting changes in sea level would be easily observed, but they could be masked by adjustment of the mantle if it has a shell with viscosity considerably less than 10 to the 21 poise. However, steady westward drift of the geoid also predicts secular changes in g, the local acceleration of gravity, at land stations. These changes are now ruled out by recent independent high-accuracy absolute measurements of g made by several workers at various locations in the Northern Hemisphere

    Correction due to finite speed of light in absolute gravimeters

    Full text link
    Correction due to finite speed of light is among the most inconsistent ones in absolute gravimetry. Formulas reported by different authors yield corrections scattered up to 8 μ\muGal with no obvious reasons. The problem, though noted before, has never been studied, and nowadays the correction is rather postulated than rigorously proven. In this paper we make an attempt to revise the subject. Like other authors, we use physical models based on signal delays and the Doppler effect, however, in implementing the models we additionally introduce two scales of time associated with moving and resting reflectors, derive a set of rules to switch between the scales, and establish the equivalence of trajectory distortions as obtained from either time delay or distance progression. The obtained results enabled us to produce accurate correction formulas for different types of instruments, and to explain the differences in the results obtained by other authors. We found that the correction derived from the Doppler effect is accountable only for 23\frac23 of the total correction due to finite speed of light, if no signal delays are considered. Another major source of inconsistency was found in the tacit use of simplified trajectory models

    International GPS Service for Geodynamics

    Get PDF
    This 1995 annual report of the IGS International GPS (Global Positioning System) Service for Geodynamics - describes the second operational year of the service. It provides the many IGS contributing agencies and the rapidly growing user community with essential information on current organizational and technical matters promoting the IGS standards and products (including organizational framework, data processing strategies, and statistics showing the remarkable expansion of the GPS monitoring network, the improvement of IGS performance, and product quality). It also introduces important practical concepts for network densification by integration of regional stations and the combination of station coordinate solutions. There are groups of articles describing general aspects of the IGS, the Associate Analysis Centers (AACs), Data Centers, and IGS stations

    Techniques for monitoring and controlling yaw attitude of a GPS satellite

    Get PDF
    Techniques for monitoring and controlling yawing of a GPS satellite in an orbit that has an eclipsing portion out of the sunlight based on the orbital conditions of the GPS satellite. In one embodiment, a constant yaw bias is generated in the attitude control system of the GPS satellite to control the yawing of the GPS satellite when it is in the shadow of the earth

    JPL IGS Analysis Center Report, 2001-2003

    Get PDF
    Three GPS orbit and clock products are currently provided by JPL for consideration by the IGS. Each differs in its latency and quality, with later results being more accurate. Results are typically available in both IGS and GIPSY formats via anonymous ftp. Current performance based on comparisons with the IGS final products is summarized. Orbit performance was determined by computing the 3D RMS difference between each JPL product and the IGS final orbits based on 15 minute estimates from the sp3 files. Clock performance was computed as the RMS difference after subtracting a linear trend based on 15 minute estimates from the sp3 files

    Towards Constraining Glacial Isostatic Adjustment in Greenland Using ICESat and GPS Observations

    Get PDF
    Constraining glacial isostatic adjustment (GIA) i.e. the Earth’s viscoelastic response to past ice changes, is an important task, because GIA is a significant correction in gravity-based ice sheet mass balance estimates. Here, we investigate how temporal variations in the observed and modeled crustal displacements due to the Earth’s response to ongoing ice mass changes can contribute to the process of constraining GIA. We use mass change grids of the Greenland ice sheet (GrIS) derived from NASA’s high resolution Ice, Cloud and land Elevation Satellite (ICESat) data in three overlapping time spans covering the period 2004–2009 to estimate temporal variations in the elastic response due to present day ice mass loss. The modeled crustal displacements (elastic + GIA) are compared with GPS time series from five permanent sites (KELY, KULU, QAQ1, THU2, and SCOR). We find, that the modeled pattern of elastic crustal displacements shows pronounced variation during the observation period, where an increase in elastic displacement is found at the northwest coast of Greenland, while a decrease is found at the southeast coast. This pattern of temporal changes is supported by the GPS observations. We find, that the temporal behavior of the ICESat-based modeled elastic response agrees well with the GPS observations at the sites KELY, QAQ1, and SCOR. This suggests, that our elastic models are able to resolve the temporal changes in the observed uplift, which indicates that the elastic uplift models are reliable at these sites. Therefore, we conclude that these sites are useful for constraining GIA

    Extent and Duration of the 2003 Cascadia Slow Earthquake

    Get PDF
    Inversion of continuous GPS measurements from the Pacific Northwest show the 2003 Cascadia slow earthquake to be among the largest of ten transients recognized here. Twelve stations bracketing slow slip indicate transient slip propagated bi-directionally from initiation in the southern Puget basin, reaching 300 km along-strike over a period of seven weeks. This event produced, for the first time, resolvable vertical subsidence, and horizontal displacement reaching six mm in southern Washington State. Inverted for non-negative thrust slip, a maximum of 3.8 cm of slip is inferred, centered at 28 km depth near the sharp arch in the subducting Juan de Fuca plate. Nearly all slip lies shallower than 38 km. Inverted slip shows a total moment release equal to Mw= 6.6 and a high degree of spatial localization rather than near-uniform slip. This suggests rupture concentrated along asperities holds for slow earthquakes as well as conventional events

    Genetic Covariance Structure of Reading, Intelligence and Memory in Children

    Get PDF
    This study investigates the genetic relationship among reading performance, IQ, verbal and visuospatial working memory (WM) and short-term memory (STM) in a sample of 112, 9-year-old twin pairs and their older siblings. The relationship between reading performance and the other traits was explained by a common genetic factor for reading performance, IQ, WM and STM and a genetic factor that only influenced reading performance and verbal memory. Genetic variation explained 83% of the variation in reading performance; most of this genetic variance was explained by variation in IQ and memory performance. We hypothesize, based on these results, that children with reading problems possibly can be divided into three groups: (1) children low in IQ and with reading problems; (2) children with average IQ but a STM deficit and with reading problems; (3) children with low IQ and STM deficits; this group may experience more reading problems than the other two

    GPS constraints on 34 slow slip events within the Cascadia subduction zone, 1997–2005

    Get PDF
    Refinements to GPS analyses in which we factor geodetic time series to better estimate both reference frames and transient deformation resolve 34 slow slip events located throughout the Cascadia subduction zone from 1997 through 2005. Timing of transient onset is determined with wavelet transformation of geodetic time series. Thirty continuous stations are included in this study, ranging from northern California to southwestern British Columbia. Our improvements in analysis better resolve the largest creep events and also identify many smaller events. At 48.5 degrees N latitude, a 14-month average recurrence interval has been observed over eight events since 1997. Farther north along Vancouver Island a host of smaller events with a distinct 14-month periodicity also occurs. In southern Washington State, some of the largest transient displacements are observed but lack any obvious periodicity in their recurrence. Along central Oregon, an 18-month recurrence is evident, while in northern California an 11-month periodicity continues through 2005. We invert GPS offsets of the 12 best recorded events for thrust slip along the plate interface using a cross-validation scheme to derive optimal smoothing parameters. These 12 events have equivalent moment magnitudes between 6.3 and 6.8 and have 2–3 cm of slip. Unlike other subduction zones, no long-duration events are observed, and cumulative surface deformation is consistently less than 0.6 cm. The many newly resolved smaller transient events in Cascadia show that slow slip events occur frequently with GPS best capturing only the largest events. It is likely that slow slip events occur more frequently at levels not detectable with GPS
    corecore