134 research outputs found

    Prominin-1+/CD133+ bone marrow-derived heart-resident cells suppress experimental autoimmune myocarditis

    Get PDF
    AIMS: Experimental autoimmune myocarditis (EAM) is a CD4(+) T cell-mediated mouse model of inflammatory heart disease. Tissue-resident bone marrow-derived cells adopt different cellular phenotypes depending on the local milieu. We expanded a specific population of bone marrow-derived prominin-1-expressing progenitor cells (PPC) from healthy heart tissue, analysed their plasticity, and evaluated their capacity to protect mice from EAM and heart failure. METHODS AND RESULTS: PPC were expanded from healthy mouse hearts. Analysis of CD45.1/CD45.2 chimera mice confirmed bone marrow origin of PPC. Depending on in vitro culture conditions, PPC differentiated into macrophages, dendritic cells, or cardiomyocyte-like cells. In vivo, PPC acquired a cardiac phenotype after direct injection into healthy hearts. Intravenous injection of PPC into myosin alpha heavy chain/complete Freund's adjuvant (MyHC-alpha/CFA)-immunized BALB/c mice resulted in heart-specific homing and differentiation into the macrophage phenotype. Histology revealed reduced severity scores for PPC-treated mice compared with control animals [treated with phosphate-buffered saline (PBS) or crude bone marrow at day 21 after MyHC-alpha/CFA immunization]. Echocardiography showed preserved fractional shortening and velocity of circumferential shortening in PPC but not PBS-treated MyHC-alpha/CFA-immunized mice. In vitro and in vivo data suggested that interferon-gamma signalling on PPC was critical for nitric oxide-mediated suppression of heart-specific CD4(+) T cells. Accordingly, PPC from interferon-gamma receptor-deficient mice failed to protect MyHC-alpha/CFA-immunized mice from EAM. CONCLUSION: Prominin-1-expressing, heart-resident, bone marrow-derived cells combine high plasticity, T cell-suppressing capacity, and anti-inflammatory in vivo effect

    Differentiation of human multipotent dermal fibroblasts into islet-like cell clusters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously obtained a clonal population of cells from human foreskin that is able to differentiate into mesodermal, ectodermal and endodermal progenies. It is of great interest to know whether these cells could be further differentiated into functional insulin-producing cells.</p> <p>Results</p> <p>Sixty-one single-cell-derived dermal fibroblast clones were established from human foreskin by limiting dilution culture. Of these, two clones could be differentiated into neuron-, adipocyte- or hepatocyte-like cells under certain culture conditions. In addition, those two clones were able to differentiate into islet-like clusters under pancreatic induction. Insulin, glucagon and somatostatin were detectable at the mRNA and protein levels after induction. Moreover, the islet-like clusters could release insulin in response to glucose in vitro.</p> <p>Conclusions</p> <p>This is the first study to demonstrate that dermal fibroblasts can differentiate into insulin-producing cells without genetic manipulation. This may offer a safer cell source for future stem cell-based therapies.</p

    Thyroid Function and Body Weight: A Community-Based Longitudinal Study

    Get PDF
    OBJECTIVE: Body weight and overt thyroid dysfunction are associated. Cross-sectional population-based studies have repeatedly found that thyroid hormone levels, even within the normal reference range, might be associated with body weight. However, for longitudinal data, the association is less clear. Thus, we tested the association between serum thyrotropin (TSH) and body weight in a community-based sample of adult persons followed for 11 years. METHODS: A random sample of 4,649 persons aged 18-65 years from a general population participated in the DanThyr study in 1997-8. We included 2,102 individuals who participated at 11-year follow-up, without current or former treatment for thyroid disease and with measurements of TSH and weight at both examinations. Multiple linear regression models were used, stratified by sex and adjusted for age, smoking status, and leisure time physical activity. RESULTS: Baseline TSH concentration was not associated with change in weight (women, P = 0.17; men, P = 0.72), and baseline body mass index (BMI) was not associated with change in TSH (women, P = 0.21; men, P = 0.85). Change in serum TSH and change in weight were significantly associated in both sexes. Weight increased by 0.3 kg (95% confidence interval [CI] 0.1, 0.4, P = 0.005) in women and 0.8 kg (95% CI 0.1, 1.4, P = 0.02) in men for every one unit TSH (mU/L) increase. CONCLUSIONS: TSH levels were not a determinant of future weight changes, and BMI was not a determinant for TSH changes, but an association between weight change and TSH change was present

    Levothyroxine Monotherapy Cannot Guarantee Euthyroidism in All Athyreotic Patients

    Get PDF
    CONTEXT: Levothyroxine monotherapy is the treatment of choice for hypothyroid patients because peripheral T4 to T3 conversion is believed to account for the overall tissue requirement for thyroid hormones. However, there are indirect evidences that this may not be the case in all patients. OBJECTIVE: To evaluate in a large series of athyreotic patients whether levothyroxine monotherapy can normalize serum thyroid hormones and thyroid-pituitary feedback. DESIGN: Retrospective study. SETTING: Academic hospital. PATIENTS: 1,811 athyreotic patients with normal TSH levels under levothyroxine monotherapy and 3,875 euthyroid controls. MEASUREMENTS: TSH, FT4 and FT3 concentrations by immunoassays. RESULTS: FT4 levels were significantly higher and FT3 levels were significantly lower (p<0.001 in both cases) in levothyroxine-treated athyreotic patients than in matched euthyroid controls. Among the levothyroxine-treated patients 15.2% had lower serum FT3 and 7.2% had higher serum FT4 compared to euthyroid controls. A wide range of FT3/FT4 ratios indicated a major heterogeneity in the peripheral T3 production capacity in different individuals. The correlation between thyroid hormones and serum TSH levels indicated an abnormal feedback mechanism in levothyroxine-treated patients. CONCLUSIONS: Athyreotic patients have a highly heterogeneous T3 production capacity from orally administered levothyroxine. More than 20% of these patients, despite normal TSH levels, do not maintain FT3 or FT4 values in the reference range, reflecting the inadequacy of peripheral deiodination to compensate for the absent T3 secretion. The long-term effects of chronic tissue exposure to abnormal T3/T4 ratio are unknown but a sensitive marker of target organ response to thyroid hormones (serum TSH) suggests that this condition causes an abnormal pituitary response. A more physiological treatment than levothyroxine monotherapy may be required in some hypothyroid patients

    Establishing Human Lacrimal Gland Cultures with Secretory Function

    Get PDF
    PURPOSE: Dry eye syndrome is a multifactorial chronic disabling disease mainly caused by the functional disruptions in the lacrimal gland. The treatment involves palliation like ocular surface lubrication and rehydration. Cell therapy involving replacement of the gland is a promising alternative for providing long-term relief to patients. This study aimed to establish functionally competent lacrimal gland cultures in-vitro and explore the presence of stem cells in the native gland and the established in-vitro cultures. METHODS: Fresh human lacrimal gland from patients undergoing exenteration was harvested for cultures after IRB approval. The freshly isolated cells were evaluated by flow cytometry for expression of stem cell markers ABCG2, high ALDH1 levels and c-kit. Cultures were established on Matrigel, collagen and HAM and the cultured cells evaluated for the presence of stem cell markers and differentiating markers of epithelial (E-cadherin, EpCAM), mesenchymal (Vimentin, CD90) and myofibroblastic (α-SMA, S-100) origin by flow cytometry and immunocytochemistry. The conditioned media was tested for secretory proteins (scIgA, lactoferrin, lysozyme) post carbachol (100 µM) stimulation by ELISA. RESULTS: Native human lacrimal gland expressed ABCG2 (mean±SEM: 3.1±0.61%), high ALDH1 (3.8±1.26%) and c-kit (6.7±2.0%). Lacrimal gland cultures formed a monolayer, in order of preference on Matrigel, collagen and HAM within 15-20 days, containing a heterogeneous population of stem-like and differentiated cells. The epithelial cells formed 'spherules' with duct like connections, suggestive of ductal origin. The levels of scIgA (47.43 to 61.56 ng/ml), lysozyme (24.36 to 144.74 ng/ml) and lactoferrin (32.45 to 40.31 ng/ml) in the conditioned media were significantly higher than the negative controls (p<0.05 for all comparisons). CONCLUSION: The study reports the novel finding of establishing functionally competent human lacrimal gland cultures in-vitro. It also provides preliminary data on the presence of stem cells and duct-like cells in the fresh and in-vitro cultured human lacrimal gland. These significant findings could pave way for cell therapy in future

    Comparison of Epithelial Differentiation and Immune Regulatory Properties of Mesenchymal Stromal Cells Derived from Human Lung and Bone Marrow

    Get PDF
    Mesenchymal stromal cells (MSCs) reside in many organs including lung, as shown by their isolation from fetal lung tissues, bronchial stromal compartment, bronchial-alveolar lavage and transplanted lung tissues. It is still controversial whether lung MSCs can undergo mesenchymal-to-epithelial-transition (MET) and possess immune regulatory properties. To this aim, we isolated, expanded and characterized MSCs from normal adult human lung (lung-hMSCs) and compared with human bone marrow-derived MSCs (BM-hMSCs). Our results show that lung-MSCs reside at the perivascular level and do not significantly differ from BM-hMSCs in terms of immunophenotype, stemness gene profile, mesodermal differentiation potential and modulation of T, B and NK cells. However, lung-hMSCs express higher basal level of the stemness-related marker nestin and show, following in vitro treatment with retinoic acid, higher epithelial cell polarization, which is anyway partial when compared to a control epithelial bronchial cell line. Although these results question the real capability of acquiring epithelial functions by MSCs and the feasibility of MSC-based therapeutic approaches to regenerate damaged lung tissues, the characterization of this lung-hMSC population may be useful to study the involvement of stromal cell compartment in lung diseases in which MET plays a role, such as in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis

    Expression of the "stem cell marker" CD133 in pancreas and pancreatic ductal adenocarcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been suggested that a small population of cells with unique self-renewal properties and malignant potential exists in solid tumors. Such "cancer stem cells" have been isolated by flow cytometry, followed by xenograft studies of their tumor-initiating properties. A frequently used sorting marker in these experiments is the cell surface protein CD133 (prominin-1). The aim of this work was to examine the distribution of CD133 in pancreatic exocrine cancer.</p> <p>Methods</p> <p>Fifty-one cases of pancreatic ductal adenocarcinomas were clinically and histopathologically evaluated, and immunohistochemically investigated for expression of CD133, cytokeratin 19 and chromogranin A. The results were interpreted on the background of CD133 expression in normal pancreas and other normal and malignant human tissues.</p> <p>Results</p> <p>CD133 positivity could not be related to a specific embryonic layer of organ origin and was seen mainly at the apical/endoluminal surface of non-squamous, glandular epithelia and of malignant cells in ductal arrangement. Cytoplasmic CD133 staining was observed in some non-epithelial malignancies. In the pancreas, we found CD133 expressed on the apical membrane of ductal cells. In a small subset of ductal cells and in cells in centroacinar position, we also observed expression in the cytoplasm. Pancreatic ductal adenocarcinomas showed a varying degree of apical cell surface CD133 expression, and cytoplasmic staining in a few tumor cells was noted. There was no correlation between the level of CD133 expression and patient survival.</p> <p>Conclusion</p> <p>Neither in the pancreas nor in the other investigated organs can CD133 membrane expression alone be a criterion for "stemness". However, there was an interesting difference in subcellular localization with a minor cell population in normal and malignant pancreatic tissue showing cytoplasmic expression. Moreover, since CD133 was expressed in shed ductal cells of pancreatic tumors and was found on the surface of tumor cells in vessels, this molecule may have a potential as clinical marker in patients suffering from pancreatic cancer.</p

    Clinical practice guidelines for the management of hypothyroidism

    Full text link

    Differentiation of embryonic and adult stem cells into insulin producing cells

    No full text
    Replacement of insulin producing cells represents an almost ideal treatment for patients with diabetes mellitus type 1. Transplantation of pancreatic islets of Langerhans is successful in experienced centers. The wider application of this therapy, however, is limited by the lack of donor organs. Insulin producing cells generated from stem cells represent an attractive alternative. Stem cells with the potential to differentiate into insulin producing cells include embryonic stem cells (ESC) as well as adult stem cells from various tissues including the pancreas, liver, bone marrow and adipose tissue. The use of human ESC is hampered by ethical concerns but research with human ESC may help us to decipher important steps in the differentiation process in vitro since almost all information available on pancreas development are based on animal studies. The present review summarizes the current knowledge on the development of insulin producing cells from embryonic and adult stem cells with special emphasis on pancreatic, hepatic and human mesenchymal stem cells
    • …
    corecore