74 research outputs found

    Intramural Ganglion Structures in Esophageal Atresia: A Morphologic and Immunohistochemical Study

    Get PDF
    Introduction and Aim. Disorders of esophageal motility causing dysphagia and gastroesophageal reflux are frequent in survivors to esophageal atresia (EA) and distal tracheoesophageal fistula (TEF). The aim of the present study was to investigate the histologic and immunohistochemical features in both esophageal atretic segments to further understand the nature of the motor disorders observed in these patients. Material and Methods. Esophageal specimens from 12 newborns with EA/TEF and 5 newborns dead of unrelated causes were examined. The specimens were fixed in 5% buffered formalin, included in paraffin and cut in 5 micron sections that were stained with hematoxilin and eosin (H and E), and immunohistochemical stainings for Actin, S-100 protein, Neurofilament, Neuron-Specific-Enolase, Chromogranin A and Peripherin were evaluated under the microscope. Results. In controls, the distribution of the neural elements was rather homogenous at both levels of the esophagus. In contrast, the atretic segments showed quantitative and qualitative differences between them with sparser nervous tissue in the distal one in comparison with the proximal one and with controls. Conclusions. These results further support the assumption that histomorphological alterations of the muscular and nervous elements within the esophageal wall might contribute to esophageal dysmotility in patients surviving neonatal operations for EA/TEF

    Past, Present, and Future Strategies for Enhanced Assessment of Embryo's Genome and Reproductive Competence in Women of Advanced Reproductive Age

    Get PDF
    Recent advancements in genomic analysis allow testing of an increasing number of genetic features in human preimplantation embryos. Typical single gene mutation and whole chromosomes testing can now be integrated with assessment of mitochondrial DNA and polygenic conditions. Diagnostic expansion into epigenetic and transcriptomic assessment in the near future are potential technological targets which may improve the prognostic outlook of patients of advanced reproductive age and overall in vitro fertilization (IVF) treatment outcomes. In this review, we discuss the technological progress of recent years and their future applications in preimplantation genetic testing in IVF

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Multiple Scenario Generation of Subsurface Models:Consistent Integration of Information from Geophysical and Geological Data throuh Combination of Probabilistic Inverse Problem Theory and Geostatistics

    Get PDF
    Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming \u3c4 neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in 3c 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an E\u3bd-2 spectrum in the energy range 1.0 7 1017 eV -2.5 7 1019 eV is E2 dN\u3bd/dE\u3bd < 4.4 7 10-9 GeV cm-2 s-1 sr-1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays

    Male infertility: role of genetic background

    No full text
    Male infertility represents one of the clearest examples of a complex disease with a substantial genetic basis. Numerous male mouse models, mutation screening and association studies reported over the last few years reveal the high prevalence of genetic causes of spermatogenic impairment, accounting for 10-15% of severe male infertility, including chromosomal aberrations and single gene mutations. Natural selection prevents the transmission of mutations causing infertility, but this protective mechanism may be overcome by assisted reproduction techniques. Consequently, the identification of genetic factors is important for appropriate management of the infertile couple. However, a large proportion of infertile males are diagnosed as idiopathic, reflecting poor understanding of the basic mechanisms regulating spermatogenesis and sperm function. Furthermore, the molecular mechanisms underlying spermatogenic damage in cases of genetic infertility (for example Yq microdeletions) are not known. These problems can be addressed only by large scale association studies and testicular or spermatozoal expression studies in well-defined alterations of spermatogenesis. It is conceivable that these studies will have important diagnostic and therapeutic implications in the future. This review discusses the genetic causes of male infertility known to date, the genetic polymorphisms possibly associated with male infertility, and reports novel results of global gene expression profiling of normal human testis by microarray technology

    BOURGEONAL OLFACTORY TRHESHOLD AND HUMAN CAPACITY OF REPRODUCTION: A PROSPECTIVE STUDY

    No full text
    Introduction. The reproductive success requires the release of millions of spermatozoa and eggs and is made more efficient by attractans that guide sperm to the eggs. For mammals the number of eggs is quite small. The question of what determines which one of the many candidate spermatozoa will fertilize the egg remains still without answer. Recent investigations have focused on the sperm Bourgeonal receptor which seems to be involved in the human sperm chemotaxis and seems to be a critical component in the fertilization process1. Human olfactory sensitivity to the sperm attractant odorant Burgeonal is still debated2. Aims: The present prospective case control study has the purpose to investigate the olfactory sensitivity to Butanol and Burgeonal comparing a group of patients not able to have children despite no alteration of the sperm and a normal fertility of the mate against a control group. Methods. The present prospective study investigated a group of 7 aldult males (mean age of 40\ub13,8) not able to have children in the last 5 years despite no alteration of the sperm and a normal fertility of the mate against a control group of 15 adult males (mean age of 27,5\ub14,8) without sperm alterations and history of fertility problems. The spermatozoa number and vitality were evaluated; the effect of buorgeonal on sperm chemotaxis, the odor threshold both for butanol and for bourgeonal were compared between the two groups. Preliminary results. The mean total number of spermatozoa did non differ in the two groups (p=0,105), as well as the sperm motility and vitality (p=0,832 and p=0,595, respectively). In both groups, spermatozoa clearly migrated towards bourgeonal (p=0,004 in the control group and p=0,001 in the study group). Nevertheless olfactory threshold for Butanol did not differ between the two groups (p=0,089), the mean olfactory threshold for Burgeonal was 12,6 in the control group and 10,2 in the study group (p=0,01). Conclusions. If confirmed by an invastigation based on a larger series, odor threshold for burgeonal could be of great value in studying the male capacity of reproduction. References 1Spehr M, Gisselmann G, Poplawski A, Riffel JA, Wetzel CH, Zimmer RK, Hatt H. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 2003;299:2054-2058. 2Olsson P, Laska M. Human Male Superiority in Olfactory Sensitivity to the Sperm Attractant Odorant Bourgeonal. Chem. Senses 2010;35:427-43
    • 

    corecore