2,284 research outputs found

    The VIMOS VLT Deep Survey. The different assembly history of passive and star-forming L_B >= L*_B galaxies in the group environment at z < 1

    Full text link
    We use the VIMOS VLT Deep Survey to study the close environment of galaxies in groups at 0.2 = L*_B galaxies (Me_B = M_B + 1.1z <= -20) are identified with Me_B <= -18.25 and within a relative distance 5h^-1 kpc <= rp <= 100h^-1 kpc and relative velocity Delta v <= 500 km/s . The richness N of a group is defined as the number of Me_B <= -18.25 galaxies belonging to that group. We split our principal sample into red, passive galaxies with NUV - r >= 4.25 and blue, star-forming galaxies with NUV - r < 4.25. We find that blue galaxies with a close companion are primarily located in poor groups, while the red ones are in rich groups. The number of close neighbours per red galaxy increases with N, with n_red being proportional to 0.11N, while that of blue galaxies does not depend on N and is roughly constant. In addition, these trends are found to be independent of redshift, and only the average n_blue evolves, decreasing with cosmic time. Our results support the following assembly history of L_B >= L*_B galaxies in the group environment: red, massive galaxies were formed in or accreted by the dark matter halo of the group at early times (z >= 1), therefore their number of neighbours provides a fossil record of the stellar mass assembly of groups, traced by their richness N. On the other hand, blue, less massive galaxies have recently been accreted by the group potential and are still in their parent dark matter halo, having the same number of neighbours irrespective of N. As time goes by, these blue galaxies settle in the group potential and turn red and/or fainter, thus becoming satellite galaxies in the group. With a toy quenching model, we estimate an infall rate of field galaxies into the group environment of R_infall = 0.9 - 1.5 x 10^-4 Mpc^-3 Gyr^-1 at z ~ 0.7.Comment: Astronomy and Astrophysics, in press. 11 pages, 11 figures, 4 tables. Minor changes with respect to the first versio

    Comparison of contact parameters measured with two different friction rigs for nonlinear dynamic analysis

    Get PDF
    The accurate measurement of contact interface parameters is of great importance for nonlinear dynamic response computations since there is a lack of predictive capabilities for such input parameters. Several test rigs have been developed at different institutions, and a series of measurements published, but their reliability remains unknown due to a lack of direct comparisons. To somehow address this issue, a Round-Robin test campaign was performed including the high frequency friction rigs of Imperial College London and Politecnico di Torino. Comparable hysteresis loops were recorded on specimen pairs manufactured from the same batch of raw stainless steel, for a wide range of test conditions, including varying normal loads, sliding distances and nominal areas of contact. Measurements from the two rigs were compared to quantify the level of agreement between the two very different experimental setup, showing a reasonably good matching in the results, but also highlighting some differences. Results also demonstrated that loading conditions can strongly affect the contact parameters, and consequently their effect must be included in future nonlinear dynamic simulations for more reliable predictions

    The Ha Luminosity Function and Star Formation Rate at z\sim 0.2

    Full text link
    We have measured the Ha+[N II] fluxes of the I-selected Canada-France Redshift Survey (CFRS) galaxies lying at a redshift z below 0.3, and hence derived the Ha luminosity function. The magnitude limits of the CFRS mean that only the galaxies with M(B) > -21 mag were observed at these redshifts. We obtained a total Ha luminosity density of at least 10^{39.44\pm 0.04} erg/s/Mpc^{3} at a mean z=0.2 for galaxies with rest-fame EW(Ha+[N II]) > 10 Angs. This is twice the value found in the local universe by Gallego et al. 1995. Our Ha star formation rate, derived from Madau (1997) is higher than the UV observations at same z, implying a UV dust extinction of about 1 mag. We found a strong correlation between the Ha luminosity and the absolute magnitude in the B-band: M(B(AB)) = 46.7 - 1.6 log L(Ha). This work will serve as a basis of future studies of Ha luminosity distributions measured from optically-selected spectroscopic surveys of the distant universe, and it will provide a better understanding of the physical processes responsible for the observed galaxy evolution.Comment: Accepted for publication in ApJ, 14 pages, LaTeX (macro aas2pp4.sty), 6 figure

    The Luminosity Function of Field Galaxies in the CNOC1 Redshift Survey

    Get PDF
    We have computed the luminosity function for 389 field galaxies from the Canadian Network for Observational Cosmology cluster redshift survey (CNOC1), over redshifts z = 0.2-0.6. We find Schechter parameters M^* - 5 log h = -19.6 \pm 0.3 and \alpha = -0.9 \pm 0.2 in rest-frame B_{AB}. We have also split our sample at the color of a redshifted but nonevolving Sbc galaxy, and find distinctly different luminosity functions for red and blue galaxies. Red galaxies have a shallow slope \alpha \approx -0.4 and dominate the bright end of the luminosity function, while blue galaxies have a steep \alpha \approx -1.4 and prevail at the faint end. Comparisons of the CNOC1 results to those from the Canada-France (CFRS) and Autofib redshift surveys show broad agreement among these independent samples, but there are also significant differences which will require larger samples to resolve. Also, in CNOC1 the red galaxy luminosity density stays about the same over the range z = 0.2-0.6, while the blue galaxy luminosity density increases steadily with redshift. These results are consistent with the trend of the luminosity density vs. redshift relations seen in the CFRS, though the normalizations of the luminosity densities appear to differ for blue galaxies. Comparison to the local luminosity function from the Las Campanas redshift survey (LCRS) shows that the luminosity density at z \approx 0.1 is only about half that seen at z \approx 0.4. A change in the luminosity function shape, particularly at the faint end, appears to be required to match the CNOC1 and LCRS luminosity functions, if galaxy evolution is the sole cause of the differences seen. However, it should be noted that the specific details of the construction of different surveys may complicate the comparison of results and so may need to be considered carefully.Comment: 22 pages, including 6 postscript figures, uses AASTEX v4.0 style files. Corrected minor typos and updated references. Results and conclusions unchanged. Final version to appear in the Astrophysical Journa

    The Angular Power Spectrum of EDSGC Galaxies

    Get PDF
    We determine the angular power spectrum, C_l, of the Edinburgh/Durham Southern Galaxy Catalog (EDSGC) and use this statistic to constrain cosmological parameters. Our methods for determining C_l, and the parameters that affect it are based on those developed for the analysis of cosmic microwave background maps. We expect them to be useful for future surveys. Assuming flat cold dark matter models with a cosmological constant (constrained by COBE/DMR and local cluster abundances), and a scale--independent bias, b, we find good fits to the EDSGC angular power spectrum with 1.11 < b < 2.35 and 0.2 < Omega_m < 0.55 at 95% confidence. These results are not significantly affected by the ``integral constraint'' or extinction by interstellar dust, but may be by our assumption of Gaussianity.Comment: 11 pages, 9 figures, version to appear in Ap

    The X-ray luminosity function of AGN at z~3

    Full text link
    We combine Lyman-break colour selection with ultradeep (> 200 ks) Chandra X-ray imaging over a survey area of ~0.35 deg^2 to select high redshift AGN. Applying careful corrections for both the optical and X-ray selection functions, the data allow us to make the most accurate determination to date of the faint end of the X-ray luminosity function (XLF) at z~3. Our methodology recovers a number density of X-ray sources at this redshift which is at least as high as previous surveys, demonstrating that it is an effective way of selecting high z AGN. Comparing to results at z=1, we find no evidence that the faint slope of the XLF flattens at high z, but we do find significant (factor ~3.6) negative evolution of the space density of low luminosity AGN. Combining with bright end data from very wide surveys we also see marginal evidence for continued positive evolution of the characteristic break luminosity L*. Our data therefore support models of luminosity-dependent density evolution between z=1 and z=3. A sharp upturn in the the XLF is seen at the very lowest luminosities (Lx < 10^42.5 erg s^-1), most likely due to the contribution of pure X-ray starburst galaxies at very faint fluxes.Comment: 16 pages, 9 figures, accepted for publication in MNRA

    The VIMOS Ultra Deep Survey. Luminosity and stellar mass dependence of galaxy clustering at z~3

    Get PDF
    We present the study of the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 2<<z<<3.5 using 3236 galaxies with robust spectroscopic redshifts from the VIMOS Ultra Deep Survey (VUDS). We measure the two-point real-space correlation function wp(rp)w_p(r_p) for four volume-limited stellar mass and four luminosity, MUV_{UV} absolute magnitude selected, sub-samples. We find that the scale dependent clustering amplitude r0r_0 significantly increases with increasing luminosity and stellar mass indicating a strong galaxy clustering dependence on these properties. This corresponds to a strong relative bias between these two sub-samples of Δ\Deltab/b^*=0.43. Fitting a 5-parameter HOD model we find that the most luminous and massive galaxies occupy the most massive dark matter haloes with \langleMh_h\rangle = 1012.30^{12.30} h1^{-1} M_{\odot}. Similar to the trends observed at lower redshift, the minimum halo mass Mmin_{min} depends on the luminosity and stellar mass of galaxies and grows from Mmin_{min} =109.73^{9.73} h1^{-1}M_{\odot} to Mmin_{min}=1011.58^{11.58} h1^{-1}M_{\odot} from the faintest to the brightest among our galaxy sample, respectively. We find the difference between these halo masses to be much more pronounced than is observed for local galaxies of similar properties. Moreover, at z~3, we observe that the masses at which a halo hosts, on average, one satellite and one central galaxy is M1_1\approx4Mmin_{min} over all luminosity ranges, significantly lower than observed at z~0 indicating that the halo satellite occupation increases with redshift. The luminosity and stellar mass dependence is also reflected in the measurements of the large scale galaxy bias, which we model as bg,HOD_{g,HOD}(>>L)=1.92+25.36(L/L^*)7.01^{7.01}. We conclude our study with measurements of the stellar-to-halo mass ratio (SHMR).Comment: 20 pages, 11 figures, A&A in press, v2. revised discussion in sec. 5.5, changed Fig. 4 and Fig. 11, added reference
    corecore