432 research outputs found

    Crystal chemical and quantum chemical studies of Ba(Sr)-Nb oxide compounds

    Get PDF
    The information available on the BaO(SrO)-NbO-NbO2 system with the niobium atom in the lower oxidation degree is very limited. Very few compounds have been found previously in this system. They are BaNbO3, SrxNbO3(0,7=x=1), Ba2Nb2O9, SrNb8O14; and some suggestions on the BaNb8O14 existence have been made also. At the same time Nb-based oxide compounds could be quite interesting in the search of new noncopper high T(sub c) superconductors Researchers studied Ba(Sr) NbxO2x-2 and Ba2(Sr2)-NbxO2x-1 compositions in the phase diagram of BaO(SrO)-NbO-NbO2 system. The synthesis of the materials was carried out in vacuum at the temperatures of 1000 to 1500 C. Barium carbonate and niobium pentoxide were used as initial components. X-ray analysis was carried out

    Frustration phenomena in Josephson point contacts between single-band and three-band superconductors

    Get PDF
    Within the formalism of Usadel equations the Josephson effect in dirty point contacts between single-band and three-band superconductors is investigated. The general expression for the Josephson current, which is valid for arbitrary temperatures, is obtained. We calculate current-phase relations for very low temperature and in the vicinity of the critical temperature. For three-band superconductors with broken time-reversal symmetry (BTRS) point contacts undergo frustration phenomena with different current-phase relations, corresponding to {\phi}-contacts. For three-band superconductors without BTRS we have close to sinusoidal current-phase relations and absence of the frustration, excepting the case of very low temperature, where under certain conditions two ground states of the point contact are realized. Our results can be used as the potential probe for the detection of the possible BTRS state in three-band superconducting systems.Comment: 14 pages, 7 figure

    Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ– Ρ‚Π° Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½Ρ– дослідТСння Ρ‚Π°ΡƒΡ‚ΠΎΠΌΠ΅Ρ€Ρ–Ρ— сСрСд 3-Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… 2-ΠΌΠ΅Ρ‚ΠΈΠ»Ρ…Ρ–Π½ΠΎΠ»Ρ–Π½-4(1H)-ΠΎΠ½Ρ–Π²

    Get PDF
    4-Hydroxy-/4-oxo tautomerism in the series of 3-substituted 2-methyl-quinolin-4(1H)-ones has been studied by 13C NMR-spectroscopy and quantum-chemical methods in various approximations (restricted Hartree-Fock method, DFT and MP2) for the isolated molecules and for solutions using empirical correction of effects for solvents (PCM COSMO procedure). Substituents that are different in their nature have no significant influence on the value of the chemical shift of carbon in position C4 of the quinolone cycle. The only exception is the carbon shielding associated with the bromine atom in the molecule of 3-bromo-2-methyl-1,4-dihydroquinoline-4-one. Significant deshielding detected in all cases in 13C NMR-spectra of the carbon nuclei in position 4 of the ring is in favour of the existence of all derivatives studied as 4-oxo forms in DMSO-d6 solution. The experimental and calculated values for the chemical shift of carbon in position C4 of 4-oxo and 4-hydroxy isomers differ considerably and can be used as a criterion for assigning quinolin-4 (1H)-ones to a particular tautomeric form.Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ЯМР 13Π‘ спСктроскопии ΠΈ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎ-химичСскими ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… приблиТСниях (ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π₯Π°Ρ€Ρ‚Ρ€ΠΈ-Π€ΠΎΠΊΠ°, DFT ΠΈ МР2) для ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΈ растворов с использованиСм эмпиричСской ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ эффСктов растворитСлСй (ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° РБМ COSMO) исслСдована 4-гидрокси 4-оксо-таутомСрия Π² ряду ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… 3-Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Ρ… 2-ΠΌΠ΅Ρ‚ΠΈΠ»Ρ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-4(1Н)-ΠΎΠ½ΠΎΠ². Π Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΏΠΎ своСму Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Ρƒ замСститСли Π½Π΅ ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ сущСствСнного влияния Π½Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ химичСского сдвига ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π‘4 Ρ…ΠΈΠ½ΠΎΠ»ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π°. Π˜ΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ составляСт лишь экранированиС ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π°, связанного с Π°Ρ‚ΠΎΠΌΠΎΠΌ Π±Ρ€ΠΎΠΌΠ° Π² ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π΅ 3-Π±Ρ€ΠΎΠΌΠΎ-2-ΠΌΠ΅Ρ‚ΠΈΠ»-1,4-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΡ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-4-oΠ½Π°. Π—Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ дСзэкранированиС, ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π½ΠΎΠ΅ Π²ΠΎ всСх случаях Π² спСктрах ЯМР 13Π‘ для ядСр ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° Π² 4-ΠΎΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΊΠΎΠ»ΡŒΡ†Π°, Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ Π² ΠΏΠΎΠ»ΡŒΠ·Ρƒ сущСствования всСх исслСдованных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Π² растворС Π² DMSO-d6 Π² Π²ΠΈΠ΄Π΅ 4-оксо-Ρ„ΠΎΡ€ΠΌ. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ расчСтныС значСния химичСского сдвига для ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π‘4 для 4-оксо- ΠΈ 4-гидрокси-ΠΈΠ·ΠΎΠΌΠ΅Ρ€ΠΎΠ² Π·Π°ΠΌΠ΅Ρ‚Π½ΠΎ ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π² качСствС критСрия для отнСсСния Ρ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-4(1Н)-ΠΎΠ½ΠΎΠ² ΠΊ Ρ‚ΠΎΠΉ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠΉ Ρ‚Π°ΡƒΡ‚ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅.Π—Π° допомогою ЯМР 13Π‘ спСктроскопії Ρ– ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎ-Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π² Ρ€Ρ–Π·Π½ΠΈΡ… наблиТСннях (ΠΎΠ±ΠΌΠ΅ΠΆΠ΅Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π₯Π°Ρ€Ρ‚Ρ€Ρ–-Π€ΠΎΠΊΠ°, DFT Ρ– МР2) для Ρ–Π·ΠΎΠ»ΡŒΠΎΠ²Π°Π½ΠΈΡ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Ρ– Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ–Π² Π· використанням Π΅ΠΌΠΏΡ–Ρ€ΠΈΡ‡Π½ΠΎΡ— ΠΊΠΎΡ€Π΅ΠΊΡ†Ρ–Ρ— Π΅Ρ„Π΅ΠΊΡ‚Ρ–Π² Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Π½ΠΈΠΊΡ–Π² (ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° РБМ COSMO) дослідТСна 4-гідрокси оксо-таутомСрія Π² ряду ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… 3-Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… 2-ΠΌΠ΅Ρ‚ΠΈΠ»Ρ…Ρ–Π½ΠΎΠ»Ρ–Π½-4(1Н)-ΠΎΠ½Ρ–Π². Π Ρ–Π·Π½Ρ– Π·Π° своїм Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΎΠΌ замісники Π½Π΅ Ρ‡ΠΈΠ½ΡΡ‚ΡŒ істотного Π²ΠΏΠ»ΠΈΠ²Ρƒ Π½Π° значСння Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ зсуву Π²ΡƒΠ³Π»Π΅Ρ†ΡŽ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– Π‘4 Ρ…Ρ–Π½ΠΎΠ»ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Ρƒ. Виняток ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ лишС Скранування Π²ΡƒΠ³Π»Π΅Ρ†ΡŽ, пов’язаного Π· Π°Ρ‚ΠΎΠΌΠΎΠΌ Π±Ρ€ΠΎΠΌΡƒ Π² ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ– 3-Π±Ρ€ΠΎΠΌΠΎ-2-ΠΌΠ΅Ρ‚ΠΈΠ»-1,4-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎΡ…Ρ–Π½ΠΎΠ»Ρ–Π½-4-oΠ½Ρƒ. Π—Π½Π°Ρ‡Π½Π΅ дСзСкранування виявлСнС Ρƒ всіх Π²ΠΈΠΏΠ°Π΄ΠΊΠ°Ρ… Ρƒ спСктрах ЯМР 13Π‘ для ядСр Π²ΡƒΠ³Π»Π΅Ρ†ΡŽ Π² 4-ΠΌΡƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– ΠΊΡ–Π»ΡŒΡ†Ρ Π²ΠΊΠ°Π·ΡƒΡ” Π½Π° ΠΊΠΎΡ€ΠΈΡΡ‚ΡŒ існування всіх дослідТСних ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… Ρƒ Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ– Π² DMSO-d6 Ρƒ вигляді 4-оксо-Ρ„ΠΎΡ€ΠΌ. Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ– Ρ‚Π° Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΠΎΠ²Ρ– значСння Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ зсуву для Π²ΡƒΠ³Π»Π΅Ρ†ΡŽ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– Π‘4 для 4-оксо- Ρ– 4-гідрокси-Ρ–Π·ΠΎΠΌΠ΅Ρ€Ρ–Π² ΠΏΠΎΠΌΡ–Ρ‚Π½ΠΎ Π²Ρ–Π΄Ρ€Ρ–Π·Π½ΡΡŽΡ‚ΡŒΡΡ Ρ– ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ використані Π² якості ΠΊΡ€ΠΈΡ‚Π΅Ρ€Ρ–ΡŽ для віднСсСння Ρ…Ρ–Π½ΠΎΠ»Ρ–Π½-4 (1Н)-ΠΎΠ½Ρ–Π² Π΄ΠΎ Ρ‚Ρ–Ρ”Ρ— Ρ‡ΠΈ Ρ–Π½ΡˆΠΎΡ— Ρ‚Π°ΡƒΡ‚ΠΎΠΌΠ΅Ρ€Π½ΠΎΡ— Ρ„ΠΎΡ€ΠΌΠΈ

    Π‘ΠΈΠ½Ρ‚Π΅Π· Ρ– ΠΊΠΎΠΌΠΏβ€™ΡŽΡ‚Π΅Ρ€Π½ΠΈΠΉ скринінг Π½ΠΎΠ²ΠΈΡ… 2-ΠΌΠ΅Ρ‚ΠΈΠ»Ρ…Ρ–Π½ΠΎΠ»Ρ–Π½-4-ΠΎΠ½Ρ–Π², зв’язаних Π· ΠΏΡ–Ρ€Π°Π·ΠΎΠ»ΠΎΠ½-5-ΠΎΠ½ΠΎΠ²ΠΈΠΌ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠΌ

    Get PDF
    The 1,3-dicarbonyl derivatives of 2-methyl-1,4-dihydroquinoline-4-one have been synthesized by alkylation of methylene active compounds with 3-dimethylaminomethyl-2-methyl-1,4-dihydroquinoline-4-one. These compounds are the convenient starting material for creating the new chemical libraries in the series of 3-heteryl substituted 2-methyl-1,4-dihydroquinoline-4-ones. In this work the examples of the synthesis of new quinolone-pyrazolone systems are presented. Their condensation with hydrazine hydrate resulted in the new derivatives of 2-methyl-3-[(5-oxo-4,5-dihydro-1H-pyrazol-4-yl)methyl]-1,4-dihydroquinolin-4-ones. The estimation of novelty of the compounds obtained in such chemical databases as PubChem, ChemBl, Spresi has shown that these substances are not present in these sources, and the chemical scaffold – quinolone bound via the methylene bridge with azoles is new. Determination of 2D similarity of the compounds synthesized by standard molecular descriptors with the biologically active structures in the ChemBl_20 database has shown the uniqueness of a new quinolone scaffold and the potential anti-inflammatory activity for compounds of this series. The molecular similarity has been determined using the ChemAxon software (JKlustor, Instant JChem).АлкилированиСм 3-Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Π°ΠΌΠΈΠ½ΠΎΠΌΠ΅Ρ‚ΠΈΠ»-2-ΠΌΠ΅Ρ‚ΠΈΠ»-1,4-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΡ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-4-ΠΎΠ½ΠΎΠΌ ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… соСди- Π½Π΅Π½ΠΈΠΉ Π±Ρ‹Π»ΠΈ синтСзированы 1,3-Π΄ΠΈΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ 2-ΠΌΠ΅Ρ‚ΠΈΠ»-1,4-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΡ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-4-ΠΎΠ½Π°. Π”Π°Π½- Π½Ρ‹Π΅ соСдинСния ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΌ стартовым ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ для создания Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊ Π² ряду 3-Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Ρ… 2-ΠΌΠ΅Ρ‚ΠΈΠ»-1,4-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΡ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-4-ΠΎΠ½ΠΎΠ². Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ синтСза Π½ΠΎΠ²Ρ‹Ρ… Ρ…ΠΈΠ½ΠΎΠ»ΠΎΠ½-ΠΏΠΈΡ€Π°Π·ΠΎΠ»ΠΎΠ½ΠΎΠ²Ρ‹Ρ… систСм. ΠšΠΎΠ½Π΄Π΅Π½ΡΠ°Ρ†ΠΈΠ΅ΠΉ Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… соСдинСний с Π³ΠΈΠ΄Ρ€Π°Π·ΠΈΠ½ Π³ΠΈΠ΄Ρ€Π°Ρ‚ΠΎΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π½ΠΎΠ²Ρ‹Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ 2-ΠΌΠ΅Ρ‚ΠΈΠ»-3-[(5-оксо-4,5-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎ-1H-ΠΏΠΈΡ€Π°Π·ΠΎΠ»-4-ΠΈΠ»)ΠΌΠ΅Ρ‚ΠΈΠ»]-1,4- Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΡ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-4-ΠΎΠ½ΠΎΠ². ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Π°Ρ ΠΎΡ†Π΅Π½ΠΊΠ° Π½ΠΎΠ²ΠΈΠ·Π½Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… соСдинСний ΠΏΠΎ химичСским Π±Π°Π·Π°ΠΌ PubChem, ChemBl ΠΈ Spresi ΠΏΠΎΠΊΠ°Π·Π°Π»Π°, Ρ‡Ρ‚ΠΎ Π΄Π°Π½Π½Ρ‹Π΅ соСдинСния совсСм Π½Π΅ прСдставлСны Π² этих источниках, Π° химичСский скаффолд – Ρ…ΠΈΠ½ΠΎΠ»ΠΎΠ½, соСдинСнный Ρ‡Π΅Ρ€Π΅Π· ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½ΠΎΠ²Ρ‹ΠΉ мостик с Π°Π·ΠΎΠ»Π°ΠΌΠΈ, являСтся Π½ΠΎΠ²Ρ‹ΠΌ. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ 2D подобия синтСзированных соСдинСний ΠΏΠΎ стандартным молСкулярным дСскрипторам с биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ структурами Π±Π°Π·Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ… ChemBl_20 ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΈ ΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π½ΠΎΠ²ΠΎΠ³ΠΎ Ρ…ΠΈΠ½ΠΎΠ»ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ скаффолда Π² Π΄ΠΈΠ·Π°ΠΉΠ½Π΅ лСкарствСнных вСщСств, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ проявлСния ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ активности срСди соСдинСний Π΄Π°Π½Π½ΠΎΠ³ΠΎ ряда. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎΠ΅ ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅ Π±Ρ‹Π»ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ обСспСчСния ChemAxon (JKlustor, Instant JChem).Алкілуванням 3-Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Π°ΠΌΡ–Π½ΠΎΠΌΠ΅Ρ‚ΠΈΠ»-2-ΠΌΠ΅Ρ‚ΠΈΠ»-1,4-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎΡ…Ρ–Π½ΠΎΠ»Ρ–Π½-4-ΠΎΠ½ΠΎΠΌ ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… сполук Π±ΡƒΠ»ΠΈ синтСзовані 1,3-Π΄ΠΈΠΊΠ°Ρ€Π±ΠΎΠ½Ρ–Π»ΡŒΠ½Ρ– ΠΏΠΎΡ…Ρ–Π΄Π½Ρ– 2-ΠΌΠ΅Ρ‚ΠΈΠ»-1,4-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎΡ…Ρ–Π½ΠΎΠ»Ρ–Π½-4-ΠΎΠ½Ρƒ. Π”Π°Π½Ρ– сполуки Ρ” Π·Ρ€ΡƒΡ‡Π½ΠΈΠΌ стар- Ρ‚ΠΎΠ²ΠΈΠΌ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΎΠΌ для створСння Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΡ… Π±Ρ–Π±Π»Ρ–ΠΎΡ‚Π΅ΠΊ Π² ряду 3-Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… 2-ΠΌΠ΅Ρ‚ΠΈΠ»-1,4-Π΄ΠΈ- Π³Ρ–Π΄Ρ€ΠΎΡ…Ρ–Π½ΠΎΠ»Ρ–Π½-4-ΠΎΠ½Ρ–Π². Π£ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– Π½Π°Π²Π΅Π΄Π΅Π½Ρ– ΠΏΡ€ΠΈΠΊΠ»Π°Π΄ΠΈ синтСзу Π½ΠΎΠ²ΠΈΡ… Ρ…Ρ–Π½ΠΎΠ»ΠΎΠ½-ΠΏΡ–Ρ€Π°Π·ΠΎΠ»ΠΎΠ½ΠΎΠ²ΠΈΡ… систСм. КондСн- ΡΠ°Ρ†Ρ–Ρ”ΡŽ Π°Π»ΠΊΡ–Π»ΠΎΠ²Π°Π½ΠΈΡ… ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… сполук Π· Π³Ρ–Π΄Ρ€Π°Π·ΠΈΠ½ Π³Ρ–Π΄Ρ€Π°Ρ‚ΠΎΠΌ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π½ΠΎΠ²Ρ– ΠΏΠΎΡ…Ρ–Π΄Π½Ρ– 2-ΠΌΠ΅Ρ‚ΠΈΠ»-3-[(5- оксо-4,5-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎ-1H-ΠΏΡ–Ρ€Π°Π·ΠΎΠ»-4-Ρ–Π»)ΠΌΠ΅Ρ‚ΠΈΠ»]-1,4-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎΡ…Ρ–Π½ΠΎΠ»Ρ–Π½-4-ΠΎΠ½Ρ–Π². ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡ†Ρ–Π½ΠΊΠ° Π½ΠΎΠ²ΠΈΠ·Π½ΠΈ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… сполук Π·Π° Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΠΌΠΈ Π±Π°Π·Π°ΠΌΠΈ PubChem, ChemBl Ρ– Spresi ΠΏΠΎΠΊΠ°Π·Π°Π»Π°, Ρ‰ΠΎ Π΄Π°Π½Ρ– сполуки зовсім Π½Π΅ прСдставлСні Π² Ρ†ΠΈΡ… Π΄ΠΆΠ΅Ρ€Π΅Π»Π°Ρ…; Π° Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΠΉ скаффолд – Ρ…Ρ–Π½ΠΎΠ»ΠΎΠ½, з’єднаний Ρ‡Π΅Ρ€Π΅Π· ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½ΠΎΠ²ΠΈΠΉ місток Π· Π°Π·ΠΎΠ»Π°ΠΌΠΈ, Ρ” Π½ΠΎΠ²ΠΈΠΌ. ВизначСння 2D схоТості синтСзованих Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ Π·Π° стандартними молСкулярними дСскрипторами Π· Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌΠΈ структурами Π±Π°Π·ΠΈ Π΄Π°Π½ΠΈΡ… ChemBl_20 ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ ΡƒΠ½Ρ–ΠΊΠ°Π»ΡŒΠ½Ρ–ΡΡ‚ΡŒ Ρ– ΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Π½ΠΎΠ²ΠΎΠ³ΠΎ Ρ…Ρ–Π½ΠΎΠ»ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ скаффолда Π² Π΄ΠΈΠ·Π°ΠΉΠ½Ρ– Π»Ρ–ΠΊΠ°Ρ€ΡΡŒΠΊΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½, Π° Ρ‚Π°ΠΊΠΎΠΆ Ρ–ΠΌΠΎΠ²Ρ–Ρ€Π½Ρ–ΡΡ‚ΡŒ прояву ΠΏΡ€ΠΎΡ‚ΠΈΠ·Π°ΠΏΠ°Π»ΡŒΠ½ΠΎΡ— активності сСрСд сполук Π΄Π°Π½ΠΎΠ³ΠΎ ряду. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρƒ ΡΡ…ΠΎΠΆΡ–ΡΡ‚ΡŒ Π±ΡƒΠ»ΠΎ Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ Π·Π° допомогою ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ½ΠΎΠ³ΠΎ забСзпСчСння ChemAxon (JKlustor, Instant JChem)

    Precision determination of band offsets in strained InGaAs/GaAs quantum wells by C-V-profiling and Schroedinger-Poisson self-consistent simulation

    Full text link
    The results of measurements and numerical simulation of charge carrier distribution and energy states in strained quantum wells In_xGa_{1-x}As/GaAs (0.06 < x < 0.29) by C-V-profiling are presented. Precise values of conduction band offsets for these pseudomorphic QWs have been obtained by means of self-consistent solution of Schroedinger and Poisson equations and following fitting to experimental data. For the conduction band offsets in strained In_xGa_{1-x}As/GaAs - QWs the expression DE_C(x) = 0.814x - 0.21x^2 has been obtained.Comment: 9 pages, 12 figures, RevTeX

    Influence of the axial compressor blade row defects on the industrial gas turbine performance

    Full text link
    This paper presents the compressor blade algorithm for predicting the defect influence on the characteristics of the stage, axial compressor or GTU as a whole. The developed model is based on the use of Bezier curves, with the control point coordinates calculated using the main geometric parameters of the airfoil, which provides highly precise geometry of both the airfoil and the blade as a whole. The paper shows some results of verification of the developed method and the selected numerical model parameters, as well as the analysis of the defect influence on the airfoil flow conditions in order to demonstrate the capabilities of the algorithm. The main results of the study were summarized and recommendations for further research were developed. Β© 2020 Institute of Physics Publishing. All rights reserved

    Lattice Distortion and Magnetism of 3d-t2gt_{2g} Perovskite Oxides

    Full text link
    Several puzzling aspects of interplay of the experimental lattice distortion and the the magnetic properties of four narrow t2gt_{2g}-band perovskite oxides (YTiO3_3, LaTiO3_3, YVO3_3, and LaVO3_3) are clarified using results of first-principles electronic structure calculations. First, we derive parameters of the effective Hubbard-type Hamiltonian for the isolated t2gt_{2g} bands using newly developed downfolding method for the kinetic-energy part and a hybrid approach, based on the combination of the random-phase approximation and the constraint local-density approximation, for the screened Coulomb interaction part. Then, we solve the obtained Hamiltonian using a number of techniques, including the mean-field Hartree-Fock (HF) approximation, the second-order perturbation theory for the correlation energy, and a variational superexchange theory. Even though the crystal-field splitting is not particularly large to quench the orbital degrees of freedom, the crystal distortion imposes a severe constraint on the form of the possible orbital states, which favor the formation of the experimentally observed magnetic structures in YTiO3_3, YVO_, and LaVO3_3 even at the HF level. Beyond the HF approximation, the correlations effects systematically improve the agreement with the experimental data. Using the same type of approximations we could not reproduce the correct magnetic ground state of LaTiO3_3. However, we expect that the situation may change by systematically improving the level of approximations for dealing with the correlation effects.Comment: 30 pages, 17 figures, 8 tables, high-quality figures are available via e-mai

    Approach for the Modelling of the Compressor's Defective Blades with Numerical Simulation Methods

    Full text link
    The current work presents the intermediate results of model development to assess the impact of various defects on the axial compressor operation. Recommendations for adjusting computational models are proposed to conduct gas-dynamic and strength studies of compressor stages and blades, taking into account various defects: verification for the presented models was carried out, which results are also presented in the paper. Based on the verification calculations results some features of CFD modeling are considered, as well as requirements for the investigated defects are indicated. The Discussion section presents the defects classification according to their influence on the compressor operation, which studying is possible using a specially developed mathematical description of blade profiles and blades geometry, as well as considering all the recommendations for computational model adjusting and a general approach to blades modeling defects. Β© 2022 Institute of Physics Publishing. All rights reserved

    On the non-Abelian Stokes theorem for SU(2) gauge fields

    Full text link
    We derive a version of non-Abelian Stokes theorem for SU(2) gauge fields in which neither additional integration nor surface ordering are required. The path ordering is eliminated by introducing the instantaneous color orientation of the flux. We also derive the non-Abelian Stokes theorem on the lattice and discuss various terms contributing to the trace of the Wilson loop.Comment: Latex2e, 0+14 pages, 3 figure

    Neutron diffraction study of YVO3, NdVO3, and TbVO3

    Get PDF
    The structural and magnetic properties of YVO3, NdVO3 and TbVO3 were investigated by single-crystal and powder neutron diffraction. YVO3 shows a structural phase transition at 200 K from an orthorhombic structure with the space group Pbnm to a monoclinic one with the space group P21/b. But supplementary high-resolution synchrotron diffraction experiments showed that the monoclinic distortion is extremely small. A group theoretical analysis shows that this magnetic state in the monoclinic phase is incompatible with the lattice structure, unless terms of higher than bilinear order in the spin operators are incorporated in the spin Hamiltonian. This observation is discussed in the light of recent theories invoking unusual many-body correlations between the vanadium t2g orbitals. A structural phase transition back to the orthorhombic space group Pbnm is observed upon cooling below 77 K. This transition is accompanied by a rearrangement of the magnetic structure into a mode compatible with the lattice structure. The crystal structures of NdVO3 and TbVO3 are closely similar to that of YVO3. However, only a single magnetic phase transition was found in the vanadium sublattice down to 9.5 K. Below 60 K the magnetic moments of the Nd- and Tb-ions are gradually polarized by the ordered vanadium moments. Below 11 K, we found a noncollinear order of the terbium moments
    • …
    corecore