59 research outputs found

    Nemlineáris és lineáris modellek a reakciókinetikában = Nonlinear and linear models in chemical kinetics

    Get PDF
    A kémiai folyamatok időbeni lefutását és a részfolyamatok sorrendjét részletes reakciómechanizmusokat tartalmazó modellekkel lehet vizsgálni. Ilyen reakciómechanizmusokat általánosan használnak égések leírására, légkörkémiában, valamint pirolízis folyamatok és biokémiai rendszerek vizsgálatára. A kémia valamennyi, itt felsorolt területén alkalmaztunk reakciókinetikai modelleket tudományos és gyakorlati szempontból is fontos jelenségek szimulációjára. Ezek a matematikai modellek erősen nemlineárisak, ami a vizsgálatukra új eszközök kifejlesztését kívánta meg. Számítottuk a modellek megoldásának érzékenységét a paraméterek változtatása hatására. Több esetben azt találtuk, hogy ezek az érzékenységi függvények hasonlóak egymáshoz, ami arra vezet, hogy a nemlineáris modell egyes körülményeknél lineárisan viselkedik. Új, az eddigieknél sokkal hatékonyabb eszközöket fejlesztettünk ki reakciómechanizmusok redukciójára, tehát az eredetinél sokkal kisebb, csaknem azonos szimulációs eredményeket adó modell megtalálására. Vizsgáltuk a paraméterek bizonytalanságának hatását a szimulációs eredmények bizonytalanságára. Elsőként foglalkoztunk annak vizsgálatával, hogy milyen kapcsolat van az Arrhenius-paraméterek bizonytalansága és az azokból számított reakciósebességi együttható hőmérsékletfüggő bizonytalansága között. Több elemi gázreakció esetén becsültük az Arrhenius-paraméterek együttes bizonytalanságát. A pályázat támogatásával 11 referált cikk, négy konferenciacikk és egy könyv jelent meg. A kutatási témában résztvevő hallgatók 9 TDK dolgozatot, 5 szakdolgozatot és egy PhD értekezést készítettek. | The temporal behaviour of chemical processes and the order of subprocesses can be simulated using mathematical models based on detailed reaction mechanisms. Such mechanisms are widely used for the description of combustion and atmospheric chemical processes and at the investigation of pyrolytic and biochemical systems. Reaction kinetic models, related to all these fields of chemistry, were applied for the simulation of processes of both academic and industrial importance. These models are strongly nonlinear and we developed a series of mathematical and computational tools for the investigation of them. The sensitivity of the model output to parameter changes was investigated. In several cases the similarity of the sensitivity functions was detected, which means that these models behave linearly at certain circumstances. New, more effective methods were developed for the reduction of reaction mechanisms. Mechanism reduction means the construction of a much smaller model that provides simulation results almost identical to the original one. The effect of the uncertainty of parameters on the uncertainty of simulation results was explored. The relation between the uncertainty of the Arrhenius parameters and the temperature dependent uncertainty of the rate coefficient was investigated. The joint uncertainty of the Arrhenius-parameters was determined for several gas-phase elementary reactions. Based on the support of the grant, 11 peer-reviewed articles, 4 conference papers and one book were published. The students participated in the research prepared 9 project (“TDK”) reports, 5 BSc or MSc theses and one PhD thesis

    Hacia un mecanismo de oxidación de metanol válido para alta y baja presión

    Get PDF
    Como ejemplo más común de biocombustibles siempre se han destacado los alcoholes y han sido objeto de considerable interés. El metanol es el alcohol más simple y a pesar existir estudios sobre su oxidación, no hay ningún mecanismo capaz de reproducir los datos experimentales en un amplio rango de condiciones. Debido al desarrollo de modelos jerárquicos, el mecanismo del metanol forma parte de los mecanismos de oxidación de alcoholes superiores, por lo que su conocimiento resulta de gran importancia. Este proyecto se apoya en los resultados obtenidos en dos trabajos desarrollados anteriormente en los que se proponen mecanismos para la conversión del metanol en diferentes condiciones y válidos respectivamente para presión atmosférica y para elevada presión. Estos mecanismos de oxidación describen la oxidación de metanol y la interacción con óxidos de nitrógeno. Ambos mecanismos funcionan de manera correcta bajo las condiciones en las que se desarrollaron pero fallan en el rango de presiones opuesto. Por lo tanto, es necesario el desarrollo de un nuevo mecanismo para la simulación del metanol en todo el rango de presiones. En base a estos dos mecanismos existentes se creó una primera versión de un mecanismo de oxidación de metanol común para los dos rangos de presión. Los mecanismos de partida comparten la mayor parte de las reacciones y sus parámetros de velocidad, sin embargo existen 28 reacciones diferentes entre ellos cuyos parámetros se calcularon de nuevo para incluirlos en el mecanismo común. Los resultados de la simulación de los tres mecanismos muestran las diferentes concentraciones de metanol, monóxido de carbono y dióxido de carbono obtenidas en comparación con los resultados experimentales disponibles. El análisis global de sensibilidad es una herramienta ampliamente utilizada para investigar los mecanismos de combustión de manera detallada. Para cada parámetro de velocidad de reacción del mecanismo común se estimaron sus límites de incertidumbre y se llevaron a cabo simulaciones de Monte Carlo para predecir las concentraciones máximas y mínimas que es posible obtener a diferentes temperaturas. Con el fin de identificar los coeficientes globales de sensibilidad y obtener las reacciones más sensibles globalmente susceptibles de ser modificadas para mejorar el rendimiento general del mecanismo se utilizó el método de la Representación de Modelos de Alta Dimensionalidad (HDMR: High Dimensional Model Representation). La reacción más importante de este mecanismo en todas las circunstancias investigadas fue la Reacción 121, CH3OH + HO2 = CH2OH + H2O2, que controla la concentración de metanol, monóxido de carbono y dióxido de carbono. Para mejorar el mecanismo de reacción, se revisaron los parámetros de velocidad de la misma con lo que se propuso un nuevo mecanismo de reacción. Se procedió a investigar el mecanismo mejorado mediante un nuevo análisis de sensibilidad, cuyos resultados se mejoraron significativamente lo que sugiere que las recomendaciones de los nuevos parámetros deben estar presentes en la actualización del mecanismo para la conversión del metanol

    Uncertainty of the rate parameters of several important elementary reactions of the H2 and syngas combustion systems

    Get PDF
    Abstract Re-evaluation of the temperature-dependent uncertainty parameter f(T) of elementary reactions is proposed by considering all available direct measurements and theoretical calculations. A procedure is presented for making f(T) consistent with the form of the recommended Arrhenius expression. The corresponding uncertainty domain of the transformed Arrhenius parameters (ln A, n, E/R) is convex and centrally symmetric around the mean parameter set. The f(T) function can be stored efficiently using the covariance matrix of the transformed Arrhenius parameters. The calculation of the uncertainty of a backward rate coefficient from the uncertainty of the forward rate coefficient and thermodynamic data is discussed. For many rate coefficients, a large number of experimental and theoretical determinations are available, and a normal distribution can be assumed for the uncertainty of ln k. If little information is available for the rate coefficient, equal probability of the transformed Arrhenius parameters within their domain of uncertainty (i.e. uniform distribution) can be assumed. Algorithms are provided for sampling the transformed Arrhenius parameters with either normal or uniform distributions. A suite of computer codes is presented that allows the straightforward application of these methods. For 22 important elementary reactions of the H2 and syngas (wet CO) combustion systems, the Arrhenius parameters and 3rd body collision efficiencies were collected from experimental, theoretical and review publications. For each elementary reaction, kmin and kmax limits were determined at several temperatures within a defined range of temperature. These rate coefficient limits were used to obtain a consistent uncertainty function f(T) and to calculate the covariance matrix of the transformed Arrhenius parameters

    Kémiai számítási feladatok nem kémia szakos egyetemisták kritérium- és alapozó tárgyaihoz

    Get PDF
    A kémiát tanuló, de nem kémia szakos egyetemi hallgatók számára az egyetem első évében a kémiai számítási feladatok jelentik a legnagyobb nehézséget. A kritérium- és alapozó tárgyak tanulása során az órákon való aktív részvétel csak kevés hallgató számára elegendő. Emellett jelentős energiát kell fektetni a tanórákon kívüli felkészülésbe, az otthoni gyakorlásba is. Ehhez kíván ez az elektronikus jegyzet segítséget nyújtani. A számítási feladatok mellett a jegyzet a reakcióegyenletek írása illetve szerves vegyületek izomerjeivel kapcsolatos feladatok területén is szeretne támpontot nyújtani a hallgatók számára. A feladatok szintjét úgy választottuk, hogy az – a hallgatói igényekhez igazodva – közelebb álljon a középiskolai, mint a későbbi egyetemi tanulmányok szintjéhez. A témakörök az ELTE TTK nem kémia szakos hallgatónak tartott alapozó órákon tárgyalt legfontosabb témákkal foglalkoznak

    The importance of chemical mechanisms in sonochemical modelling

    Get PDF
    A state-of-the-art chemical mechanism is introduced to properly describe chemical processes inside a harmonically excited spherical bubble placed in water and saturated with oxygen. The model uses up-to-date Arrhenius-constants, collision efficiency factors and takes into account the pressure-dependency of the reactions. Duplicated reactions are also applied, and the backward reactions rates are calculated via suitable thermodynamic equilibrium conditions. Our proposed reaction mechanism is compared to three other chemical models that are widely applied in sonochemistry and lack most of the aforementioned modelling issues. In the governing equations, only the reaction mechanisms are compared, all other parts of the models are identical. The chemical yields obtained by the different modelling techniques are taken at the maximum expansion of the bubble. A brief parameter study is made with different pressure amplitudes and driving frequencies at two equilibrium bubble sizes. The results show that due to the deficiencies of the former reaction mechanisms employed in the sonochemical literature, several orders of magnitude differences of the chemical yields can be observed. In addition, the trends along a control parameter can also have dissimilar characteristics that might lead to false optimal operating conditions. Consequently, an up-to-date and accurate chemical model is crucial to make qualitatively and quantitatively correct conclusions in sonochemistry
    corecore