PROCEEDINGS OF THE COMBUSTION INSTITUTE (ISSN: 1540-7489) 35: (1) pp. 589-596. (2015)

doi:10.1016/j.proci.2014.06.071

Optimization of a hydrogen combustion mechanism using both direct and indirect measurements

T. Varga^{1,2}, T. Nagy¹, C. Olm^{1,2}, I.Gy. Zsély¹, R. Pálvölgyi¹, É. Valkó^{1,2}, G. Vincze¹, M. Cserháti¹, H.J. Curran³, T. Turányi^{1,*}

¹Institute of Chemistry, Eötvös University (ELTE), Budapest, Hungary ² MTA-ELTE Research Group on Complex Chemical Systems, Budapest, Hungary ³ Combustion Chemistry Centre, National University of Ireland, Galway (NUIG), Ireland

* Corresponding author:

Prof. Tamás Turányi Institute of Chemistry, Eötvös University (ELTE) 1518 Budapest, P.O.Box 32, Hungary Fax: +36-1-372-2592 E-mail: <u>turanyi@chem.elte.hu</u>

Colloquium: Reaction Kinetics

Total length		Main text	Nomenclature	References	Abstract
6148	Word equivalent	3592	0	804	179
(Method 1)		1	1		L

	Eq. 1	Table 1	Table 2	Table 3	Fig. 1
No. of columns		2	1	2	2
Word equivalent figure					900
Word equivalent caption					
Total Word equivalent	31	350	106	365	900

Supplemental materials are available for this manuscript

Abstract

The Kéromnès*et al.* (2013)mechanism for hydrogen combustionhas been optimized using a large set of indirect experimental data, consisting of ignition measurements in shock tubes (566datapoints in 40 datasets) and rapid compression machines (219/20), and flame velocity measurements (364/55), covering wide ranges of temperature (800 K –2300 K), pressure (0.1 bar –65 bar) and equivalence ratio ($\varphi = 0.2$ –5.0). According to the sensitivity analysis carried out at each experimental datapoint, 30 Arrhenius parameters and 3 third body collision efficiency parameters of 11 elementary reactions could be optimizedusing these experimental data. 1749 directly measured rate coefficient values in 56 datasets belonging to the 11 reaction steps were also utilized. Prior uncertainty ranges of the rate coefficients were determined from literature data. Mechanism optimization hasled to a new hydrogen combustion mechanism, a set of newly recommended rate parameters with their covariance matrix, and temperature-dependent posterior uncertainty ranges of the rate coefficients. The optimized mechanismgenerated herewas tested together with13 recent hydrogen combustion mechanisms and proved to be the best one.

Keywords: hydrogen combustion; detailed mechanisms; mechanism optimization; parameter uncertainty

1. Introduction

The reaction mechanism of hydrogen combustion plays a central role in combustion chemistry. Several new hydrogen combustion mechanisms were published in the last years; see *e.g.* the reviews of Ó Conaire*et al.*[1], Konnov[2], Hong *et al.*[3], Burke *et al.*[4], and Kéromnès*et al.*[5]. In all of these mechanisms, most of the parameters were based on directly measured or theoretically calculated rate coefficients, but also some of the rate parameters were tuned to improve the agreement with measured ignition delay times or flame velocities. These types of experimental data are usually referred to as indirect measurements, since such experimental results can be compared with simulation results based on a detailed mechanism. Although these mechanisms contain almost identical reaction steps and were developed by utilizing a similar set of experimental conditions are different[6].

Mechanism optimizationis the process during which the rate parameters of several reaction steps are systematically changed within their uncertainty limits to achieve a better reproduction of experimental results. The first articles in this topic were written by Frenklach and Miller [7-9] and an algorithm was described in the article of Frenklach, Wang, and Rabinowitz[10]. The most widely used optimized mechanism is the GRI-Mech 3.0[11]. Frenklach *et al.* extended the mechanism optimization approach towards data collaboration[12-16], recommending the services of the PrIMewebsite[17] and the application of the PrIMe data format[15]. Another series of mechanism optimization papers was published by Wang *et al.*, who applied this approach to the combustion mechanisms of syngas [18], ethylene [19], propane[20], and *n*-heptane [21].

In the mechanism optimization works of Frenklach *et al.* and Wang *et al.*"optimization targets", based on indirect measurement data, were selected and the most influential rate parameters (called "active parameters") were identified by local sensitivity analysis. They optimized *A*-factors of the rate expressions, third body collision efficiency parameters, and enthalpies of formation. During the

parameter optimization, the simulation results were calculated indirectly, using polynomial surrogate models ("response surfaces"). Both Frenklach *et al.* and Wang *et al.* reported that a large number of theobtained optimized *A*-factors were at the edges of their uncertainty interval, which usually meant a factor of 2 or 3 difference from the previously recommended values. To overcome this problem, in their recent works [16, 21-23]the objective function was extended in such a way that deviation from the evaluated *A*-factor (determined on the basis of direct measurements) was penalized, and therefore the *A*-factors optimized in this way were closer to the evaluated ones.

Cai and Pitsch[24] suggested optimization of rate rules for larger hydrocarbon models, which reduce the dimensionality of the task and also guarantee the consistency of rate coefficients of kinetically similar reactions. This approach is not applicable for the combustion mechanisms of small fuel molecules.

Davis *et al.*[18] produced an optimized syngas combustion mechanism, including a hydrogen combustion mechanism subset. They considered 36(22) optimization targets, including 12 (6) measured laminar flame velocities, 2 (2) concentration maxima in flat flames, 10(6) flow reactor measurements and 12 (8) ignition delay measurements in shock tubes. The original mechanism consisted of 14 (11) species and 30 (20) reactions. Optimization of 28 (21) rate parameters (including 22 (16) *A*-factors and 6 (5) 3^{rd} body efficiencies) was then carried out. The numbers in parentheses refer to the values belonging to the hydrogen subsystem. The optimized mechanism of Davis *et al.*[18]became highly successful and was used in many modelingstudies.

You *et al.*[23]recently published an article about the PrIMe Workflow Application. The applicability of this software was demonstrated by the optimization of a hydrogen combustion mechanism, considering 8 ignition delay times measured in shock tubes and 4 flow reactor measurements. The authors optimized the *A*-factors of all of the 21 reaction steps. The obtained mechanism is applicable within the PrIMemodeling framework and the authors did not publish it in CHEMKIN format.

The methodology used here has several similarities and differences compared to the methods used by the authors above. We also apply local sensitivity analysis for the identification of active parameters, the PrIMe data format[17], and response surfaces for improving the numerical efficiency. The differences are that (i) we use a large number of indirect experimental data (instead of selected optimization targets), (ii) all Arrhenius parameters are optimized (instead of onlythe *A*factors) and (iii) new approaches are used for the generation of response surfaces and global parameter estimation. Agreement of the optimized parameters with the previous rate parameter evaluations is achieved by taking into account direct measurements of rate coefficientson which the evaluations had been based, instead of guiding the optimized parameters towards the evaluated values. The methodology applied here has been described in detail in a previous article [25].

The hydrogen combustion mechanism of Kéromnès*et al.* [5]was selected as the initial mechanism on the basis of our previous investigations[6], since this mechanism provided the best overall description of the experimental data. The optimization is based on1149 indirect measurements (ignition delay times measured in shock tubes and rapid compression machines (RCMs), and flame velocities), and also on 1749 direct measurements of the rate coefficients of important reaction steps. 33 rate parameters were optimized here, including 30 Arrhenius parameters and 3third body collision efficiency parameters of 11 elementary reactions. The optimized mechanism obtained was tested together with13recently published hydrogen combustion mechanisms. The new mechanism provides a better reproduction of the experimental datacompared to any of the other tested mechanisms. Also, it is demonstrated that all optimized rate parameters are within their chemically realistic uncertainty region.

2. Collection of indirect experimental data

A large set of indirect experimental data was collected for hydrogen combustion, consisting of ignition delays in shock tubes (786 datapoints in 54 datasets from 16 publications) and RCMs (229 datapoints in 20 datasets from three publications), flame velocity measurements (631 datapoints in 73 datasets from 22 publications), concentration–time profiles in jet-stirred reactors (JSRs) (149datapoints in 9 datasets from one publication) and concentration–time profiles in flow reactors (372datapoints in 16 datasets from two publications). Burke *et al.*[4]found that simulated speciated flame measurement dataare not sensitive to the kinetic parameters. Our calculations have also confirmed this observation, therefore such data were not used here.

A dataset contains those datapoints that were consecutively measured using the same apparatus at similar conditions except for one condition that was systematically varied. These data include all measurements that had been used in the mechanism development works of Ó Conaire*et al.*[1], Konnov[2], Hong *et al.*[3], Burke *et al.*[4], and Kéromnès*et al.*[5], but our collection is much wider and also includes many additional experimental data. A detailed list of the collected data can be found in TablesS1 – S5of the SupplementalMaterial.All experimental data were encoded in PrIMe file format[17], which is an XML scheme for the systematic storage of combustion experiments.

A MATLAB code called Optima was used for simulating the combustion experiments, local sensitivity analysis, response surface generation, mechanism optimization, and testing reaction mechanisms against the experimental data. The code reads the PrIMe datafiles, prepares the corresponding CHEMKIN-II [26] input file, starts the appropriate simulation program(SENKIN [27], PREMIX [28] or PSR [29]) of the CHEMKIN-II package, and processes the simulation results.

The collected set of experimental data has been used in a recent paper [6]to test the performance of 19 recently published hydrogen combustion mechanisms (including the hydrogen combustion part of syngas and selectedhydrocarbon combustion mechanisms). These calculations indicated that ignition delay times measured in shock tubes at temperatures below 1000 K were poorly reproduced by allmechanisms. At these conditions the pressure behind the reflected shock wave cannot be

considered constant in time[30], and in the early shock tube measurements the pressure-time profiles were not reported which could be used to take into account this effect. Theselow-temperatureshock tube data (131 datapoints) were excluded from both the optimization and mechanism testing. All RCM measurements were accompanied with measured pressure profiles; therefore the low-temperature RCM data could be used. Flow reactor experiments were interpreted by the authors by shifting the simulated species profiles to match the simulated half fuel depletion time with the experiments [31, 32]. We used the same type of time shifting in all our simulations. However, this introduces a free parameter during optimization and allows for an underestimation of systematic differences between the model and experimental results. For this reason these experimental results between fuel depletion of 90% and 10% were taken into account. The rate parameters showed relatively low sensitivity at the conditions of the JSR datapoints and therefore these points were not considered in the optimization, but were used for mechanism testing.

3. Selection of rate parameters to be optimized

Local sensitivity analysisat the conditions of the indirect experimental data was carried out based on the Kéromnès mechanism.For each simulated experimental datapoint, the sensitivities of the simulation result with respect to the *A*-factors of each reaction step and (if applicable) to the third body efficiencies were calculated. We selected the rate parameters of those reactions for optimization that produced high sensitivity coefficient values at several experimental conditions. The list of the rate parameters chosen for optimization is given in Table 1. Altogether, 30 Arrhenius parameters of 11 reactions and the third body collision efficiencies of Ar, H₂and H₂Oof reaction R9 H+O₂+M=HO₂+M were selected. For reactions R8, R9 and R16, the Arrhenius parameters refer to the low-pressure limit.The third body collision efficiencies of reactions R8 and R16 did not show a high importance, nor did the other collision efficiency parameters of reaction R9. For most selected reactions all three Arrhenius parameters (A, n, E) were optimized. In the case of reactions R9, R11 and R15, two Arrhenius parameters were sufficient to describe the temperature dependence of the rate coefficient, therefore only two parameters were optimized for these reactions.

4. Determination of the *a priori* uncertainty domain of the parameters

Global parameter optimization methods require a definition of the domain of uncertainty of the parameters, because the optimal parameter set is sought within this domain. Also, the aim of the present optimization was to find physically realistic rate parameters and therefore the *a priori* uncertainty domain of rate parameters had to be determined from direct measurements and from theoretical calculations found in the literature. Articles that report the results of direct measurements provide the values of the measured rate coefficient of an elementary reactionat various temperatures, pressures and possibly using different bath gases.

The method for determining the prior uncertainty domain of the Arrhenius parameters has previously been described in detail [25] for two elementary reactions and a similar treatment was used here for all 11 reaction steps. For each elementary reaction investigated, all direct measurements and theoretical determinations of the rate coefficient were collected from the NIST Chemical Kinetics Database [33] and from review articles [1-5]. On an Arrhenius plot, the temperature dependence of ln*k* outlines an uncertainty band of the rate coefficient. The distance of the k^{min} and k^{max} limits from the centerline defines the f(T) temperature-dependent uncertainty parameter. The f(T) points were converted to the prior covariance matrix of the Arrhenius parameters[34, 35]. Also, the width of the uncertainty band was used as the limiting value of the acceptable rate coefficients during the optimization. For reactions R15 and R18, very little literature information was available and constant f=0.4 and f=0.6 were estimated, respectively. The f(T) functions obtained can be seen in Figure S1 of the Supplemental Material. Little information was available on the uncertainty of the third body

efficiency parameters of reaction R9. In the optimization, we used non-restrictive uncertainty ranges $m(H_2) = 1.30 \pm 1.25$, $m(Ar) = 0.5 \pm 0.4$ and $m(H_2O) = 10 \pm 6$.

5. Collection of relevant direct measurement data

The next step was the collection of reliable direct measurement data for theselected reaction steps. Not all direct measurements used at the determination of the uncertainty limits were utilized, but only 1749 datapoints in 56 datasets from 42 publications that were considered reliable by the review articles. The number of direct measurements used for each reaction step is given in Table 1 and the detailed list can be seen in Table S6 of the Supplemental Material.All direct measurement results (*i.e.* rate coefficient values) together with the conditions of determinations were also encoded in PrIMe file format[17].

6. Calculation of response surfaces

A polynomial response surface was calculated for each indirect measurement. The active parameters (Arrhenius-parameters and third body collision efficiencies), previously identified by sensitivity analysis, were uniformly sampled within the uncertainty range defined by the corresponding *a priorif(T)* functions. 10,000samples of the active parameters were generated for each datapoint, all other parameters were fixed at their original values, and the experiment was simulated using each parameter set. The simulation results were fitted by orthonormal polynomials using the method described in [36]. To generate a fast surrogate model, monomials were restricted to be at most4th order and tohave up to two variables of which one is first order. The orthonormal polynomialexpansions were then converted to regular polynomials [36].

The polynomials obtained were tested against simulation results generated from 500new, randomsets of parameters. The maximum allowed difference between the test set of simulation results and the polynomial was the 1σ experimental uncertainty of the measurement. Using

this criterion, asatisfactory response surface was obtained for most of the datapoints. For ignition delay times and flamevelocities, average error of the response surface was about 0.5% and 0.05 cm/s, respectively. Accurateresponse surfaces could be created for about 80% of the indirect experimental data, including 538 ignition delay measurements in shock tubes from 54 datasets, 153 ignition delay measurements in RCMsfrom 20 datasets and 475 flame velocity measurements from 72 datasets.

7. Parameter optimization

The global parameter optimization method applied here has been described in detail in [25] and it has also been used in [37]and[38]. The optimal set of parameters was achieved by the minimization of the following objective function:

$$E(\mathbf{p}) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{N_i} \sum_{j=1}^{N_i} \left(\frac{Y_{ij}^{\text{mod}}(\mathbf{p}) - Y_{ij}^{\text{exp}}}{\sigma(Y_{ij}^{\text{exp}})} \right)^2$$
(1)

Here *N* is the number of datasets and *N_i* is the number of datapoints in the *i*-thdataset. Values y_{ij}^{exp} and $\sigma(y_{ij}^{exp})$ are the *j*-th measureddatapoint and its standard deviation, respectively, in the *i*-thdataset. The experimental standard deviation was determined for each dataset separately, based on their scatter. The estimated standard deviations are listed in Tables S1–S6of the Supplemental Material. Constant absolute error ($\sigma(y_{ij}^{exp})$ identical for all *j*) was assumed for the measured flame velocities, in this case $Y_{ij} = y_{ij}$. Constant relative error ($\sigma(\ln y_{ij}^{exp})$ identical for all *j*) was assumed for the measured flame velocities, for the ignition delay measurements and the rate coefficients determined in direct experiments. For the indirect measurement data, the simulated (modeled) value is Y_{ij}^{mod} , which is obtained from a simulation using an appropriate detailed mechanism. For the direct measurements, the corresponding modeled value Y_{ij}^{mod} is calculated using the appropriate expression of the rate coefficient at a given temperature, pressure, and bath gas composition.

The optimization involved the fitting of 33 parameters to approximately 3000datapoints which is a computationally challenging task, therefore asystematic hierarchicaloptimization strategy was devised. In the first optimization step those experimental data were selected as optimization targets that were sensitive only to the parameters of the lowest number of reactions (R1 and R9). Then more and more experimental data and the corresponding influential reactions were included following the same concept and all parameters considered up to that point were optimized. This resulted in theinclusion offurther reactions in the following order: R2, R3, R10, R8, R11, R13, R18, R16 and R15.

In the first stage, a complete hierarchical optimizationwas carried out using the response surfaces only. Starting from the newly obtained parameter set, in the second optimization stage the ignition delay times were calculated with SENKIN directly and not via the response surfaces, while the computationally more expensive laminar flame calculations were still performed with the surrogate models. This allowed for the elimination of the error caused by the potential inaccuracies of the response surfaces of the ignition experiments. Also, in this way ignition experiments for which accurate response surfaces could not be generated were also taken into account. However, the difference between the optimized parameter sets obtained in the first and second stages of optimization was not significant. Afterwards all experimental datasets that could not be reproduced within 4σ of the experimental uncertainty by the model obtained in the previous step were excluded from the final optimization step. Ten shock tube, one RCM and ten flame data sets were excluded this way, and are marked in Tables S1-3.

In the final optimizationcycle, 566datapoints of shock tube and 219datapoints of RCM ignition measurements were used, together with364flame velocity measurements and 1749 direct measurements. Table 1 presents the optimized values of the rate parameters. The complete optimized mechanism is given in the Supplemental Material in CHEMKIN format together with the transport data file.Table 2 shows that the value of the objective function (1) decreased significantly as a result

of the optimization, and also the description of the experimental data improved in each data category separately.

8. Investigation of the optimized mechanism

The performance of the optimized mechanism wascompared to13 hydrogen combustion mechanisms that were mainly published in the last decade. The mechanisms used for comparisons included the hydrogen combustion mechanisms ofÓ Conaire*et al.*[1], Konnov[2], Hong *et al.*[3] and Burke *et al.*[4]and other mechanisms [5, 18, 39-44] that were originally developed for syngas, hydrocarbon or oxygenate combustion, but were also validated for hydrogen combustion data. The simulations were carried out with the CHEMKIN codes and response surfaces were not used here. The flame,JSR and flow reactorexperiments not considered in the optimization were also taken into account. The datasets that were excluded from the final optimization (marked in Tables S1-3) were also not considered in this comparison.

The calculated error function values are given in Table 3. In each column, these values are normalized by the number of datasets. The total error function values are the dataset weighted sums of the values belonging to each category.Somemechanisms [1-3, 11]do not contain He as a bath gas, and according to our simulations cannot reproduce well the experiments with He. Therefore, flame velocity experiments with and without helium diluent are indicated separately in Table 3. This tableshows that the optimized mechanism gives the best overall reproduction of all available experimental data, althoughit is not the best in each category, since Burke-2012 [4]is better at reproducing the flame velocity and flow reactor measurements, while GRI-Mech 3.0 [11]is better at reproducing the JSR outlet concentrations.

9. The a posteriori uncertainty of the determined parameters

The covariance matrix of all fitted parameters was calculated using the equation published in[25]. This covariance matrix characterizes the joint*a posteriori* domain of uncertainty of the parameters and it can be transformed to the f(T) posterior uncertainty function of each investigated reaction step[25]. The optimized rate coefficient functions never reached theirprioruncertainty limits in the investigated temperature range of 800 K to 2300 K. Figure 1 shows the temperature dependence of the original and the optimized rate coefficients for each reaction step, and the prior and posterior uncertainty bands. The mechanism optimization process resulted in a narrower and better established uncertainty band of the rate parameters for most of the reactions investigated. Figure 1 shows that the initial and optimized rate coefficients are significantly different for reactions R13, R15 and R18. These are all HO₂ radical reactions and, according to the sensitivity analysis results, these rate coefficients were mainly constrained by lean flame velocity measurements.

10. Conclusions

An optimization of the hydrogen combustion mechanism of Kéromnèset al.[5]is presented in this article. A large amount of experimental data was collected from the literature including ignition delay time, flame velocity, and JSR measurements. The local sensitivity coefficients of the simulated experimental datapoints were determined, and the results indicated that rate parameters of 11 reactions (in total 30 Arrhenius parameters and 3third body collision efficiency parameters) have a high influence on the simulation results. All direct measurements and theoretical determinations belonging to these 11 elementary reactions were collected and used to outline the *a priori* uncertainty band of the rate coefficients. The optimization took into account both direct and indirect measurements, and yielded optimized values of these parameters. It also provided posterior uncertainty bandsfor the rate coefficients, which wereusuallynarrower than the prior ones. The performance of the optimized mechanism was compared with those of several recently published mechanisms and it is demonstrated that our optimized hydrogen combustion mechanism provides the

best overall description of the currently available ignition delay time, laminar flame velocity, JSR exit concentrationand flow reactormeasurements, while all rate coefficients are consistent with the respective direct measurements.

Acknowledgements

The authors acknowledge the helpful discussions with Prof. M. J. Pilling, and the financial support of OTKA grants K84054 and NN100523. The authors are also grateful for the comments of the partners in COST collaboration CM0901 Detailed Chemical Models for Cleaner Combustion.

References

- [1] M. Ó Conaire, H.J. Curran, J.M. Simmie, W.J. Pitz, C.K. Westbrook, Int. J. Chem. Kinet. 36 (2004) 603-622.
- [2] A.A. Konnov, Combust. Flame 152 (2008) 507-528.
- [3] Z. Hong, D. Davidson, R. Hanson, Combust. Flame 158 (2011) 633-644.
- [4] M. Burke, M. Chaos, Y. Ju, F.L. Dryer, S. Klippenstein, Int. J. Chem. Kinet. 44 (2012) 444-474.
- [5] A. Kéromnès, W.K. Metcalfe, K.A. Heufer, N. Donohoe, A.K. Das, C.-J. Sung, J. Herzler, C. Naumann, P. Griebel, O. Mathieu, M.C. Krejci, E.L. Petersen, W.J. Pitz, H.J. Curran, Combust. Flame 160 (2013) 995–1011.
- [6] C. Olm, I.G. Zsély, R. Pálvölgyi, T. Varga, T. Nagy, H.J. Curran, T. Turányi, Combust. Flame (2013) in press,
- available on line, <u>http://dx.doi.org/10.1016/j.combustflame.2014.1003.1006</u>.
- [7] D. Miller, M. Frenklach, Int. J. Chem. Kinet. 15 (1983) 677-696.
- [8] M. Frenklach, Combust. Flame 58 (1984) 69–72.
- [9] M. Frenklach, D.L. Miller, AIChE J. 31 (1985) 498-500.
- [10] M. Frenklach, H. Wang, M.J. Rabinowitz, Prog. Energy Combust. Sci. 18 (1992) 47-73.
- [11] G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriary, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson,
- S. Song, W.C. Gardiner, V.V. Lissianski, Z. Qin: GRI-Mech 3.0, available at http://www.me.berkeley.edu/gri_mech/
- [12] R. Feeley, P. Seiler, A. Packard, M. Frenklach, J. Phys. Chem. A 108 (2004) 9573–9583.
- [13] M. Frenklach, A. Packard, P. Seiler, R. Feeley, Int. J. Chem. Kinet. 36 (2004) 57-66.
- [14] R. Feeley, M. Frenklach, M. Onsum, T. Russi, A. Arkin, A. Packard, J. Phys. Chem. A 110 (2006) 6803-6813.
- [15] M. Frenklach, Proc. Combust. Inst. 31 (2007) 125–140.
- [16] X.Q. You, T. Russi, A. Packard, M. Frenklach, Proc. Combust. Inst. 33 (2011) 509-516.
- [17] M. Frenklach: PrIMe Webpage, available at http://www.primekinetics.org/
- [18] S. Davis, A. Joshi, H. Wang, F. Egolfopoulos, Proc. Combust. Inst. 30 (2005) 1283-1292.
- [19] D.A. Sheen, X. You, H. Wang, T. Lovas, Proc. Combust. Inst. 32 (2009) 535-542.
- [20] W.J. Qin, V.V. Lissianski, H. Yang, W.C. Gardiner, S.G. Davis, H. Wang, Proc. Combust. Inst. 28 (2000) 1663–1669.
- [21] D.A. Sheen, H. Wang, Combust. Flame 158 (2011) 645–656.
- [22] D.A. Sheen, H. Wang, Combust. Flame 158 (2011) 2358-2374.
- [23] X.Q. You, A. Packard, M. Frenklach, Int. J. Chem. Kinet. 44 (2012) 101-116.
- [24] L.M. Cai, H. Pitsch, Combust. Flame 161 (2014) 405-415.
- [25] T. Turányi, T. Nagy, I.G. Zsély, M. Cserháti, T. Varga, B.T. Szabó, I. Sedyó, P.T. Kiss, A. Zempléni, H.J. Curran, Int. J. Chem. Kinet. 44 (2012) 284-302.
- [26] R.J. Kee, F.M. Rupley, J.A. Miller, in, Sandia National Laboratories Report SAND89-8009B, 1989.
- [27] A.E. Lutz, R.J. Kee, J.A. Miller, in, Sandia National Laboratories Report SAND87-8248, 1988.
- [28] R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, in, Sandia National Laboratories Report SAND85-8240, 1985.
- [29] P. Glarborg, R.J. Kee, J.F. Grcar, J.A. Miller, in, Sandia National Laboratories Report SAND86-8209, 1986.
- [30] G.A. Pang, D.F. Davidson, R.K. Hanson, Proc. Combust. Inst. 32 (2009) 181-188.
- [31] R.A. Yetter, F.L. Dryer, H. Rabitz, Combust. Sci. Technol. 79 (1991) 129-140.
- [32] M.A. Mueller, T.J. Kim, R.A. Yetter, F.L. Dryer, Int. J. Chem. Kinet. 31 (1999) 113-125.
- [33] J.A. Manion, R.E. Huie, R.D. Levin, J.D.R. Burgess, V.L. Orkin, W. Tsang, W.S. McGivern, J.W. Hudgens, V.D.

Knyazev, D.B. Atkinson, E. Chai, A.M. Tereza, C.-Y. Lin, T.C. Allison, W.G. Mallard, F. Westlet, J.T. Herron, R.F.

Hampson, D.H. Frizzell: NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.4.3, Data version 2008.12, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8320., available at http://kinetics.nist.gov/

- [34] T. Nagy, T. Turányi, Int.J.Chem.Kinet. 43 (2011) 359-378.
- [35] T. Nagy, T. Turányi, Reliability Engineering Syst. Safety 107 (2012) 29-34.
- [36] T. Turányi, Computers Chem. 18 (1994) 45-54.

[37] I.G. Zsély, T. Varga, T. Nagy, M. Cserháti, T. Turányi, S. Peukert, M. Braun-Unkhoff, C. Naumann, U. Riedel, Energy 43 (2012) 85–93.

- [38] T. Varga, I.G. Zsély, T. Turányi, T. Bentz, M. Olzmann, Int. J. Chem. Kinet. 46 (2014) 295-304.
- [39] J. Li, Z. Zhao, A. Kazakov, M. Chaos, F.L. Dryer, J.J.J. Scire, Int. J. Chem. Kinet. 39 (2007) 109-136.
- [40] P. Saxena, F.A. Williams, Combust. Flame 145 (2006) 316-323.
- [41] D. Healy, D.M. Kalitan, C.J. Aul, E.L. Petersen, G. Bourque, H.J. Curran, Energ. Fuel 24 (2010) 1521–1528.
- [42] CRECK modeling Group Hydrogen/CO mechanism version 1201, available at
- http://creckmodeling.chem.polimi.it/kinetic.html/
- [43] H. Sun, S.I. Yang, G. Jomaas, C.K. Law, Proc. Combust. Inst. 31 (2007) 439-446.

[44] Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego: Chemical-Kinetic Mechanisms for Combustion Applications, San Diego Mechanism, version 2014-02-17, available at http://combustion.ucsd.edu/

		Number	of direct	Opt	Optimized parameters		
Op	otimized subset of reactions	measur	ements	(un	(units: mol, cm ³ ,s, K)		
		Datapoints	Datasets	lnA	п	E/R	
R1	$H + O_2 = O + OH$	745	9	30.25	0.2434	7265	
R2	$O + H_2 = H + OH$	338	11	10.21	2.750	3208	
R3	$OH + H_2 = H + H_2O$	181	7	16.90	1.803	1612	
R8	$H + OH + M = H_2O + M$	6	3	55.54	-2.600	-56.84	
R9 ^{1,2}	$H + O_2 + M = HO_2 + M$	194	10	44.38	-1.239	_	
R10	$HO_2 + H = H_2 + O_2$	28	1	23.16	1.083	278.7	
R11	$HO_2 + H = OH + OH$	-	-	31.79	_	119.3	
R13	$HO_2 + OH = H_2O + O_2$	67	4	19.49	1.441	-1080	
R15	$HO_2 + HO_2 = H_2O_2 + O_2$	73	4	32.45	_	5253	
R16	$OH + OH + M = H_2O_2 + M$	113	6	35.21	-0.2033	-2175	
R18	$H_2O_2 + H = H_2 + HO_2$	4	1	40.32	-1.249	3738	

Table 1 Reactions selected for optimization, the number of direct measurements used for optimization and the optimized values of the parameters.

¹ Consisting of 40 datapoints in 4 datasets measured in N_2 bath gas and 154 datapoints in 6 datasets measured in Ar bath gas.

gas. ² Optimized values of 3rd body collision efficiency parameters ($\pm 1\sigma$) of reaction H + O₂ + M = HO₂ +M: $m(H_2)=1.48\pm1.0, m(Ar)=0.540\pm0.011, m(H_2O)=12.03\pm0.53$

Table 2				
Error function v	values calculated	l for theinitiala	ind the optimized	mechanisms
Measurement	Kéromnès	Ontimized	1 -	

Measurement	Kéromnès	Optimized
type	mechanism	mechanism
Shock tube	1.081	1.043
RCM	1.400	0.600
Flame velocities Direct	3.115	1.770
measurements	2.254	0.924
Total	7.851	4.338

Table 3

Comparison of error function values between our optimized and 13 recently published mechanisms by experiment type.
The error function values are normalized by the number of datasets within each column.

			1						
Mechanism	Ref.	shock tube	RCM	JSR	Flow reactors	Flames	Flames (w/o He)	Total (w/o He)	Total
Optimized mechanism	this work	5.94	6.70	2.97	8.08	4.86	6.11	5.32	4.96
Kéromnès 2013	[5]	6.69	11.33	3.02	13.25	8.11	5.88	7.62	8.29
NUIG NGM 2010	[41]	7.92	17.08	3.00	7.27	7.24	9.94	9.53	8.45
Ó Conaire 2004	[1]	8.51	23.15	2.96	8.18	-	8.90	10.44	-
Konnov 2008	[2]	9.67	27.61	3.06	10.91	-	6.37	11.04	-
Hong 2011	[3]	11.45	9.15	3.01	8.15	-	18.72	12.40	-
Li 2007	[39]	7.58	43.98	2.99	7.83	7.61	7.07	12.69	12.04
Burke 2012	[4]	13.29	48.54	3.06	3.91	4.57	5.91	14.57	12.65
Saxena Williams 2006	[40]	11.06	47.28	3.02	28.30	7.60	8.13	17.05	15.43
San Diego 2014	[44]	16.80	17.75	3.00	14.90	25.22	17.62	13.86	17.22
CRECK 2012	[42]	6.61	28.42	2.93	21.44	25.49	38.30	21.32	18.58
Davis 2005	[18]	11.62	93.55	3.00	4.89	5.84	7.58	21.52	18.60
GRI 3.0 1999	[11]	49.07	115.6	2.42	11.56	-	23.97	43.78	-
Sun 2007	[43]	11.99	309.2	3.11	25.42	15.31	18.60	60.50	52.55
No. of datapoints		566	219	149	191	432	319	1390	1513
No. of data sets		43	19	9	14	62	39	121	145

Fig. 1.

Arrhenius plots of the initial and optimized rate coefficients with their prior and posterioruncertainty ranges for the 11 optimized elementary reactions.

List of figure captions

Fig. 1.

Arrhenius plots of the initial and optimized rate coefficients with their prior and posterior uncertainty ranges for the 11 optimized elementary reactions.

List of Supplemental Material

Supplement 1

 Table S1

 Ignition time measurements of hydrogen–oxygen mixtures in shock tubes

Table S2

Ignition time measurements of hydrogen-oxygen mixtures in rapid compression machines (RCMs)

Table S3

Laminar flame speed measurements of hydrogen-oxygen mixtures

Table S4

Jet stirred reactor (JSR) measurements of hydrogen-oxygen mixtures

Table S5

Flow reactor measurements of hydrogen-oxygen mixtures

Table S6

fDirect measurements considered in the optimization

Fig. S1. Prior uncertainty parameters for each reaction step considered in the optimization. Symbols show the f(T) values determined at every 100 K from the published rate parameters. Solid lines show the corresponding f(T) functions calculated from the determined covariance matrix of the Arrhenius parameters.

Supplement 2

The optimized reaction mechanism in CHEMKIN format.

Supplement 3

The CHEMKIN transport data file.

Supplemental Material for

Optimization of a hydrogen combustion mechanism using both direct and indirect measurements

T. Varga^{1,2}, T. Nagy¹, C. Olm^{1,2}, I.Gy. Zsély¹, R. Pálvölgyi¹, É. Valkó^{1,2}, G. Vincze¹, M. Cserháti¹, H. Curran³, T. Turányi^{1,*}

¹Institute of Chemistry, Eötvös University (ELTE), Budapest, Hungary ² MTA-ELTE Research Group on Complex Chemical Systems, Budapest, Hungary ³ Combustion Chemistry Centre, National University of Ireland, Galway (NUIG), Ireland

Proc. Combust. Inst., 35 (2015)

Table S1

Ignition time measurements of hydrogen–oxygen mixtures in shock tubes Datasets excluded from the final optimization are marked with a grey background

ID [.xml]	N_i	σ [%]	Diluents	φ	<i>p /</i> atm	<i>T /</i> K				
Chaumeix <i>et al.</i> (2007) [1]										
g00000001	7	12	Ar	1	2.05	1181-1343				
g0000002	5	10	Ar	0.75	2.1	1184-1359				
g0000003	5	10	Ar	0.39	2.18	1164-1519				
			Pa	ang <i>et al</i> .	(2009) [2]					
g0000007	33	19	Ar	1	3.37-3.71	924-1118				
g0000008	13	18	Ar	0.42	3-3.5	906-1049				
			Herzler	and Nau	mann (2009) [3]					
g0000009	10	12	Ar	0.5	1.02-1.1	923-1027				
g00000010	8	17	Ar	0.5	3.78-4.09	958-1035				
g00000011	12	10	Ar	0.5	15.13-16.37	1018-1121				
g00000012	15	10	Ar	1	0.87-1.13	918-1718				
g00000013	13	10	Ar	1	3.82-4.12	962-1160				
g00000014	9	10	Ar	1	14.64-19.27	1015-1238				
			Pete	ersen et a	<i>l</i> . (1996) [4]					
x0000065	14	10	Ar	1	33	1648-1855				
x0000066	8	39	Ar	1	33	1189-1300				
x0000067	17	26	Ar	1	57	1655-1930				
x0000068	7	10	Ar	0.99	64	1684-1779				
x0000069	16	18	Ar	1	64	1361-1876				
x0000070	3	18	Ar	1	64	1279-1334				
x00000071	6	10	Ar	1	87	1701-1715				
			Cheng a	nd Opper	nheim (1984) [5]					
x00000356	57	24	Ar	1	1.35-2.90	1012-1427				
x10000019	55	19	Ar	0.5	1.06-2.84	1004-1397				
			Coh	en and La	arsen (1967)					
x00000357	22	27	Ar	1	0.25-1.44	941-1583				
			Skinner	r and Ring	grose (1965) [6]					
x10000001	7	21	Ar	2	5	964-1075				
			Schot	t and Kin	sey (1958) [7]					
x1000002	17	33	Ar	0.25	0.74-1.99	1086-1836				
				Slack (19	977) [8]					
x10000005	16	17	N_2	1	2	984-1184				
	•	•	Fujimo	to and Su	zuki (1967) [9]	•				
x1000006	16	10	Ar	1	0.90-2.01	835-1335				
x1000007	17	10	Ar	1	1.89-2.74	890-1076				

Petersen et al. (2003) [10]										
x10000008 24 10 Ar 1 1 1009-1431										
x10000016	4	14	Ar	1.47	1	1111-1511				
x10000017	9	10	Ar	1.03	1	1181-1753				
Bhaskaran <i>et al.</i> (1973) [11]										
x10000020 14 10 N ₂ 1 2.5 1038-1323										
Wang et al. (2003) [12]										
x10000021	10	22	N_2/H_2O	0.42	4	1051-1272				
x10000022	14	27	N_2	0.42	4	955-1173				
x10000023	21	37	N_2/H_2O	0.42	4	1011-1239				
x10000024	12	14	N_2/H_2O	0.42	4	1075-1331				
x10000025	10	15	N_2/H_2O	0.42	9.5	1099-1252				
x10000026	11	10	N_2/H_2O	0.42	16	1049-1209				
			As	aba <i>et al</i> .	(1965) [13]					
x10000027	12	32	Ar	0.17	0.23-0.41	1428-2320				
x10000028	15	29	Ar	0.5	0.27-0.46	1602-2554				
x10000029	10	25	Ar	1.5	0.24-0.43	1480-2423				
	-		Zha	ang <i>et. al.</i>	(2012) [14]					
x10000030	7	14	Ar	0.5	4.93	1024-1195				
x10000031	10	47	Ar	0.5	9.87	1035-1222				
x10000032	9	23	Ar	0.5	19.74	1011-1267				
			Naur	nann <i>et. a</i>	<i>l</i> . (2011) [15]					
x10001009	13	26	Ar	0.1	15.77-17.57	1037-1255				
x10001010	19	10	Ar	0.1	3.36-4.15	935-1360				
x10001011	19	12	Ar	0.1	0.73-1.32	939-2109				
x10001012	11	14	Ar	0.1	17.31-18.49	956-1178				
x10001013	9	15	Ar	0.1	4.07-4.48	932-1131				
x10001014	19	14	Ar	0.1	0.68-1.20	889-1675				
x10001015	16	10	Ar	3.99	14.01-16.38	947-1227				
x10001016	20	13	Ar	3.99	3.65-4.44	967-1463				
x10001017	26	17	Ar	3.99	0.91-1.35	943-2136				
x10001018	10	13	Ar	0.5	14.90-16.05	1060-1243				
x10001019	13	10	Ar	0.5	3.86-4.48	1006-1257				
x10001020	11	20	Ar	0.5	0.93-1.04	932-1954				

Table S2

Ignition time measurements of hydrogen–oxygen mixtures in rapid compression machines (RCMs) Datasets excluded from the final optimization are marked with a grey background

ID [.xml]	N_i	σ[%]	Diluents	φ	<i>p /</i> atm	T / atm
			K	éromnès a	et al. (2013) [16]	
x4000001	16	13	Ar/N ₂	0.35	7.71-7.84	975-1017
x4000002	35	14	Ar/N ₂	0.35	14.75-15.27	948-1010
x4000003	27	17	Ar/N ₂	0.35	26.54-29.83	940-1002
x4000004	17	12	Ar/N ₂	0.5	7.90-8.10	963-1012
x4000005	10	10	Ar/N ₂	0.5	7.58-8.11	971-1014
x4000006	15	17	Ar/N ₂	0.5	15.09-15.39	943-992
x4000007	24	26	Ar/N ₂	0.5	29.39-30.16	897-997
x4000008	10	36	Ar/N ₂	0.5	30.55-32.26	922-970
x4000009	12	10	Ar/N ₂	0.5	14.62-14.82	1005-1056
	•	•		Das et a	<i>l.</i> (2013) [16]	
x4000011	4	13	N_2	1	9.87	993-1041
x4000012	8	14	N_2	1	29.61	917-1029
x4000013	7	17	N_2	1	69.08	915-1010
x4000014	5	12	N_2/H_2O	1	9.87	996-1048
x4000015	8	10	N_2/H_2O	1	29.61	917-1023
x4000016	7	17	N_2/H_2O	1	69.08	908-1000
x4000017	6	26	N_2/H_2O	1	29.61	927-982
x4000018	6	36	N_2/H_2O	1	69.08	914-976
				Mittal et	al. (2013) [16]	
x4001002	5	13	Ar/N ₂	1	49.35	963-1044
x4001007	6	14	Ar/N ₂	1	29.61	952-1047
x4001012	6	17	Ar/N ₂	1	14.80	983-1066

Table S3

Laminar flame speed measurements of hydrogen–oxygen mixtures Datasets excluded from the final optimization are marked with a grey background

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ID [.xml]	Type ¹	N_i	σ/cms^{-1}	Diluents	φ	p / atm	<i>T /</i> K		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Koroll <i>et al.</i> (1993) [17]									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	gal_fl_1	OPF	14	12.07	N_2	0.15-5.56	1	298		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				В	radley et al. (20	007) [18]				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	gal_fl_3	OPF	12	12.74	N_2	0.30-1.00	1	365		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	gal_fl_4	OPF	7	7.77	N_2	0.40-1.00	5	365		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	galfl5	OPF	8	11.61	N_2	0.30-1.00	10	365		
					Taylor (1991)) [19]				
Takabashi et al. (1983) [20] Tise et al. (2000) [21] Tise et al. (2000) [21] x20000002 OPF 16 4.85 Nz 0.45-4.02 1 298 X2000006 OPF 10 3.23 He 0.50-3.50 3 298 X2000006 OPF 10 5.15 He 0.60-3.50 5 298 X20000009 OPF 6 8.25 He 0.84-2.00 10 298 X2000001 OPF 6 4.63 He 0.84-2.00 10 298 X2000001 OPF 6 4.63 He 0.84-2.00 10 298 X2000001 OPF 6 4.26 He 0.84-2.00 10 298 X2000001 OPF 7 9.07 Nz 0.30-5.5 1 298 Vagelopoulos et al. (1994) [24] X20000025 CTF <th colsp<="" td=""><td>x00000185</td><td>OPF</td><td>16</td><td>2.00</td><td>N_2</td><td>0.41-3.45</td><td>1</td><td>296</td></th>	<td>x00000185</td> <td>OPF</td> <td>16</td> <td>2.00</td> <td>N_2</td> <td>0.41-3.45</td> <td>1</td> <td>296</td>	x00000185	OPF	16	2.00	N_2	0.41-3.45	1	296	
x20000001 FCM 9 8.53 N2 0.93-4.38 1 298 x20000002 OPF 16 4.85 N2 0.45-4.02 1 298 x20000070 OPF 10 3.23 Hc 0.59-2.52 1 298 x20000008 OPF 10 5.15 He 0.60-3.50 3 298 x20000010 OPF 6 8.25 He 0.84-2.00 10 298 x20000010 OPF 6 4.63 He 0.85-2.00 1 298 x20000004 OPF 19 2.35 Nx 0.30-5.00 1 298 x20000005 OPF 7 9.07 Ny 0.53-3.94 1 291 x20000014 CTF 6 2.00 Ny 0.30-5.51 1 298 x20000022 CTF 22 3.10 Ny 0.25-1.49 1 298 x20000023 CTF 16 <t< td=""><td></td><td>1</td><td></td><td>Ta</td><td>kahashi <i>et al</i>. (1</td><td>1983) [20]</td><td>1</td><td>1</td></t<>		1		Ta	kahashi <i>et al</i> . (1	1983) [20]	1	1		
The et al. (2000) [21] x2000006 OPF 10 3.23 He 0.545-4.02 1 298 x20000006 OPF 10 5.15 He 0.65-2.52 1 298 x20000000 OPF 6 8.25 He 0.66 x2000001 OPF 6 4.4.26 He 0.85-2.00 15 298 x2000004 OPF 7 9.07 N 0.30-5.0 1 298 x2000004 OPF 7 9.07 N 0.30-5.0 1 298 x20000014 CTF 2 3.10 N 0.30-6.55 1 298 <th colspa<="" td=""><td>x20000001</td><td>FCM</td><td>9</td><td>8.53</td><td>N_2</td><td>0.93-4.38</td><td>1</td><td>298</td></th>	<td>x20000001</td> <td>FCM</td> <td>9</td> <td>8.53</td> <td>N_2</td> <td>0.93-4.38</td> <td>1</td> <td>298</td>	x20000001	FCM	9	8.53	N_2	0.93-4.38	1	298	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Tse <i>et al.</i> (200	0) [21]				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	x20000002	OPF	16	4.85	<u>N</u> 2	0.45-4.02	1	298		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x20000006	OPF	10	3.23	He	0.59-2.52	1	298		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x20000007	OPF	11	3.66	He	0.60-3.50	3	298		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x20000008	OPF	10	5.15	He	0.50-3.50	5	298		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x20000009	OPF	6	8.25	He	0.84-2.00	10	298		
x20000011 OPF 6 4.26 He $0.84-2.00$ 20 298 Aung et al. (1997) [22] x2000004 OPF 19 2.35 N2 $0.30-5.00$ 1 298 Lijima and Takeno (1986) [23] x2000005 OPF 7 9.07 N2 $0.53-3.94$ 1 291 Vagelopoulos et al. (1994) [24] x20000022 CTF 6 2.00 N2 $0.30-5.60$ 1 298 x20000023 CTF 16 2.32 N3 $0.15-0.60$ 1 298 x20000035 CTF 16 2.32 N3 $0.15-0.60$ 1 298 x20000036 CTF 8 2.00 N2 $0.80-2.20$ 1 298 x20000025 OPF 15 4.19 N2 $0.26-3.57$ 1 298 x20000026 OPF 8 2.00 N2 $0.45-4.00$ 0.5 298 x20000027 <td>x20000010</td> <td>OPF</td> <td>6</td> <td>4.63</td> <td>He</td> <td>0.85-2.00</td> <td>15</td> <td>298</td>	x20000010	OPF	6	4.63	He	0.85-2.00	15	298		
Aung et al. (1997) [22] x2000004 OPF 19 2.35 N2 0.30-5.00 1 298 X20000005 OPF 7 9.07 N3 0.30-0.55 1 298 X20000014 CTF 6 2.00 N3 0.30-0.55 1 298 X20000022 CTF 16 2.00 N2 0.15-0.60 1 298 X20000035 CTF 16 2.32 N2 0.80-3.30 1 298 X20000023 CTF 10 4.42 N2 0.80-3.30 1 298 X20000023 OPF 10 6.43 <th 2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2<="" colspan="2" td=""><td>x20000011</td><td>OPF</td><td>6</td><td>4.26</td><td>He</td><td>0.84-2.00</td><td>20</td><td>298</td></th>	<td>x20000011</td> <td>OPF</td> <td>6</td> <td>4.26</td> <td>He</td> <td>0.84-2.00</td> <td>20</td> <td>298</td>		x20000011	OPF	6	4.26	He	0.84-2.00	20	298
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20000004	ODE	10		Aung et al. (19)	97) [22]	1	200		
Initial and Takeno (1986) [23] Vagelopulos et al. (1994) [24] Vagelopulos et al. (1994) [24] x20000014 CTF 6 2.01 No 0.33.0.055 1 298 Egolfopulos and Law (1990) [25] x20000022 CTF 2 3.10 N2 0.25.1.49 1 298 x20000035 CTF 16 2.32 N2 0.15-0.60 1 298 x20000036 CTF 10 4.42 N2 0.80-3.30 1 298 X20000023 HF 1 298 X20000026 OPF 10 6.81 N2 0.45-4.00 2 298 X20000026 OPF 10	x20000004	OPF	19	2.35	N ₂	0.30-5.00	1	298		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20000005	ODE	-	lıjın	ha and Takeno	(1986) [23]	1	201		
Vagetopoulos et al. (1994) [24] x20000014 CTF 6 2.00 N2 0.30-0.55 1 298 Egolfopoulos and Law (1990) [25] x20000035 CTF 16 2.32 N2 0.15-0.60 1 298 x2000036 CTF 8 2.00 N2 0.51-1.25 1 298 x20000037 CTF 10 4.42 N2 0.80-2.20 1 298 Hermanns et al. (2007) [26] x2000025 OPF 15 4.19 N2 0.26-3.57 1 298 Aung et al. (1998) [28] X2000026 OPF 8 2.00 N2 0.45-3.00 0.35 298 X2000027 OPF 10 6.82 N2 0.45-4.00 1 298 X2000028 OPF 10 6.86 N2 0.45-4.00 1 298 X20000030 OPF 10 6.86 N	x20000005	OPF	1	9.07	N_2	0.53-3.94	1	291		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20000014	OTE		Vage	elopoulos <i>et al.</i>	(1994) [24]	1	209		
Egonopoulos and Law (1990) [25] x20000022 CTF 22 3.10 N2 0.25-1.49 1 298 x20000035 CTF 16 2.32 N2 0.15-0.60 1 298 x20000036 CTF 8 2.00 N2 0.51-1.25 1 298 x20000037 CTF 10 4.42 N2 0.80-2.20 1 298 x20000023 HFM 29 2.00 N2 0.80-3.30 1 298 x20000025 OPF 15 4.19 N2 0.26-3.57 1 298 x20000026 OPF 8 2.00 N2 0.45-3.00 0.35 298 x20000027 OPF 10 6.81 N2 0.45-4.00 1 298 x20000028 OPF 10 6.82 N2 0.45-4.00 3 298 x20000031 OPF 8 23.50 N2 0.45-4.00 1 298	x20000014	CIF	6	2.00	N ₂	(1000) [25		298		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20000022	OTE	22	Egolic	poulos and Lav	w (1990) [25		209		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X20000022	CIF	22	3.10	N ₂	0.25-1.49	1	298		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x20000035	CIF	16	2.32	<u>N2</u>	0.15-0.60	1	298		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x20000036	CIF	8	2.00	N2	0.51-1.25	1	298		
Terminine <i>et al.</i> (2007) [26] x20000023 HFM 29 2.00 N_2 0.80-3.30 1 298 Lamoreux <i>et al.</i> (2003) [27] x20000025 OPF 15 4.19 N_2 0.26-3.57 1 298 Aung <i>et al.</i> (1998) [28] x20000026 OPF 8 2.00 N_2 0.45-3.00 0.35 298 x20000027 OPF 10 6.81 N_2 0.45-4.00 0.5 298 x20000029 OPF 10 6.82 N_2 0.45-4.00 2 298 x2000030 OPF 10 6.86 N_2 0.45-4.00 2 298 x2000031 OPF 8 23.50 N_2 0.45-4.00 4 298 x2000032 OPF 10 2.00 N_2 0.45-4.00 1 298 x2000033 OPF 10 2.00 N_2 0.60-3.00 1 298 <th< td=""><td>x20000037</td><td>CIF</td><td>10</td><td>4.42</td><td>N_2</td><td>0.80-2.20</td><td>1</td><td>298</td></th<>	x20000037	CIF	10	4.42	N_2	0.80-2.20	1	298		
X200002.5 Inf M 2.9 2.00 N_2 0.000310 1 2.98 Lamoreux et al. (2003) [27] x20000025 OPF 15 4.19 N_2 0.26-3.57 1 298 Aung et al. (1998) [28] x20000026 OPF 8 2.00 N_2 0.45-3.00 0.35 298 x20000027 OPF 10 6.81 N_2 0.45-4.00 1 298 x20000029 OPF 10 6.82 N_2 0.45-4.00 2 298 x2000030 OPF 10 6.82 N_2 0.45-4.00 2 298 x2000030 OPF 10 6.86 N_2 0.45-4.00 3 298 x2000031 OPF 8 23.50 N_2 0.60-3.00 1 298 x2000032 OPF 10 2.00 N_2 0.60-4.00 1 298 x2000033 OPF 13 5.29 N_2 0.60-4.00 1 298 x20000034 OPF	x20000023	LIEM	20		N	(0.80.3.30)	1	208		
x20000025 OPF 15 4.19 N2 0.26-3.57 1 298 Aung et al. (1998) [28] x20000026 OPF 8 2.00 N2 0.45-3.00 0.35 298 x20000027 OPF 10 6.81 N2 0.45-4.00 1 298 x20000028 OPF 10 5.90 N2 0.45-4.00 1 298 x20000029 OPF 10 6.82 N2 0.45-4.00 2 298 x20000030 OPF 10 6.82 N2 0.45-4.00 2 298 x2000031 OPF 8 23.50 N2 0.45-4.00 4 298 x2000032 OPF 10 2.00 N2 0.60-3.00 1 298 x2000033 OPF 13 5.29 N2 0.50-4.00 1 298 x20000034 OPF 12 2.32 N2 0.60-4.00 1 298	X20000023	111 101	29	La	$1 \mathbf{v}_2$	2003) [27]	1	298		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x20000025	OPE	15	/ 19	N.	0.26-3.57	1	298		
x20000026 OPF 8 2.00 N_2 0.45-3.00 0.35 298 x20000027 OPF 10 6.81 N_2 0.45-4.00 0.5 298 x20000028 OPF 10 5.90 N_2 0.45-4.00 1 298 x20000029 OPF 10 6.82 N_2 0.45-4.00 2 298 x20000030 OPF 10 6.86 N_2 0.45-4.00 3 298 x20000031 OPF 8 23.50 N_2 0.45-4.00 4 298 x20000032 OPF 10 2.00 N_2 0.60-3.00 1 298 x20000033 OPF 12 2.32 N_2 0.60-4.00 1 298 x20000034 OPF 9 4.42 N_2 0.60-4.50 1 298 x20000038 OPF 9 4.42 N_2 0.60-4.50 1 298 x20000039b OPF 6 23.94 He 0.90-3.75 1 298 x	X20000023	011	15	4.17	Aung et al. (19)	98) [28]	1	290		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x20000026	OPF	8	2.00	N ₂	0 45-3 00	0.35	298		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x20000020	OPF	10	6.81	N ₂	0.45-4.00	0.55	298		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x20000028	OPF	10	5 90	N ₂	0.45-4.00	1	298		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x20000029	OPF	10	6.82	N ₂	0.45-4.00	2	298		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x20000030	OPF	10	6.86	N ₂	0.45-4.00	3	298		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x20000031	OPF	8	23.50	N ₂	0.45-4.00	4	298		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x20000032	OPF	10	2.00	N ₂	0.60-3.00	1	298		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x20000033	OPF	13	5.29	N_2	0.50-4.00	1	298		
Kwon and Faeth (2001) [29]x20000038OPF94.42 N_2 0.60-4.501298x2000039aOPF419.93He0.600.5-3.0298x2000039bOPF623.94He0.90-3.751298x2000039cOPF37.50He4.501-3298x2000040aOPF32.00Ar0.600.3-1.0298x2000040bOPF76.34Ar0.90-3.751298x2000040cOPF42.41Ar4.50.5-3.0298x2000040dOPF430.30Ar4.51298x2000040dOPF55.62Ar0.61298	x20000034	OPF	12	2.32	N_2	0.60-4.00	1	298		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Км	on and Faeth (2001) [29]				
x20000039a OPF 4 19.93 He 0.60 0.5-3.0 298 x20000039b OPF 6 23.94 He 0.90-3.75 1 298 x20000039c OPF 3 7.50 He 4.50 1-3 298 x20000040a OPF 3 2.00 Ar 0.60 0.3-1.0 298 x20000040b OPF 7 6.34 Ar 0.90-3.75 1 298 x20000040b OPF 7 6.34 Ar 0.60 0.3-1.0 298 x20000040c OPF 4 2.41 Ar 4.5 0.5-3.0 298 x20000040c OPF 4 30.30 Ar 4.5 1 298 x20000040d OPF 5 5.62 Ar 0.6 1 298	x20000038	OPF	9	4.42	N ₂	0.60-4.50	1	298		
x20000039bOPF623.94He0.90-3.751298x2000039cOPF37.50He4.501-3298x2000040aOPF32.00Ar0.600.3-1.0298x2000040bOPF76.34Ar0.90-3.751298x2000040cOPF42.41Ar4.50.5-3.0298x2000040dOPF430.30Ar4.51298x2000040eOPF55.62Ar0.61298	x20000039a	OPF	4	19.93	He	0.60	0.5-3.0	298		
x20000039c OPF 3 7.50 He 4.50 1-3 298 x20000040a OPF 3 2.00 Ar 0.60 0.3-1.0 298 x20000040b OPF 7 6.34 Ar 0.90-3.75 1 298 x20000040c OPF 4 2.41 Ar 4.5 0.5-3.0 298 x20000040d OPF 4 30.30 Ar 4.5 1 298 x20000040e OPF 5 5.62 Ar 0.6 1 298	x20000039b	OPF	6	23.94	He	0.90-3.75	1	298		
x20000040a OPF 3 2.00 Ar 0.60 0.3-1.0 298 x20000040b OPF 7 6.34 Ar 0.90-3.75 1 298 x20000040c OPF 4 2.41 Ar 4.5 0.5-3.0 298 x20000040d OPF 4 30.30 Ar 4.5 1 298 x20000040e OPF 5 5.62 Ar 0.6 1 298	x20000039c	OPF	3	7.50	He	4.50	1-3	298		
x20000040b OPF 7 6.34 Ar 0.90-3.75 1 298 x20000040c OPF 4 2.41 Ar 4.5 0.5-3.0 298 x20000040d OPF 4 30.30 Ar 4.5 1 298 x20000040e OPF 5 5.62 Ar 0.6 1 298	x20000040a	OPF	3	2.00	Ar	0.60	0.3-1.0	298		
x20000040c OPF 4 2.41 Ar 4.5 0.5-3.0 298 x20000040d OPF 4 30.30 Ar 4.5 1 298 x20000040e OPF 5 5.62 Ar 0.6 1 298	x20000040b	OPF	7	6.34	Ar	0.90-3.75	1	298		
x20000040d OPF 4 30.30 Ar 4.5 1 298 x20000040e OPF 5 5.62 Ar 0.6 1 298	x20000040c	OPF	4	2.41	Ar	4.5	0.5-3.0	298		
x20000040e OPF 5 5.62 Ar 0.6 1 298	x20000040d	OPF	4	30.30	Ar	4.5	1	298		
	x20000040e	OPF	5	5.62	Ar	0.6	1	298		

			1	Burke <i>et al.</i> (20	10) [30]		
x20000041	OPF	6	4 57	He He	0.85	1-25	295
x20000042	OPF	3	9.52	He	1	1-10	295
x20000043	OPF	6	3.52	He	1	1-25	295
x20000044	OPF	6	2 40	He	1	1-25	295
x20000044	OPF	5	5 31	He	1	1-20	295
x20000045	OPE	5	2.00	Δr	2.5	1_20	295
x20000040	OPE	6	2.00	Ar Ar	2.5	1-20	295
x20000047	OPE	6	2.47	Ar Ar	2.5	1-25	295
x20000048	OPE	2	4.00	Ar Ar	2.5	1-25	295
X2000004)	011	2	4.00	Tang at al. (200)	2.5	1-5	275
x20000050	OPE	6	8 47	N.	0.601.60	1	208
X20000030	UT	0	0.47	$\frac{1}{1}$	0.00-1.00	1	298
v20000051	ODE	17	2.65	N	[32]	1	208
x20000031	OFI	1/	2.03	I_{1}	0.00-4.50	1	278
w20000052	ODE	0	2.62	nualig <i>et al</i> . (20	00 [33]	1	208
X20000032	OFF	9	5.02	$\frac{1N_2}{Purks at al. (20)}$	11)[24]	1	298
	ODE	4	2.16		11)[34]	1.10	205
x20000055	OPF	4	2.10	Не	0.3	1-10	293
x20000034	OPF	5	2.00	Не	0.5	J 1 10	293
x20000033	OPF	2	2.00	Пе	0.5	1-10	293
x20000056	OPF	5	2.00	He	0.5	1-10	295
x20000057	OPF	5	2.00	He	0.7	1-10	295
x20000058	OPF	0	2.00	He	0.7	1-25	295
x20000059	OPF	3	2.00	He O' + 1 (20)		1-10	295
200000000	ODE	0	2.25	Qiao et al. $(200$)/)[35]	1	200
x20000060	OPF	8	3.25	He/N ₂	1	1	298
x20000061	OPF	12	2.00	Ar/N_2	1	1	298
x20000062	OPF	10	2.97	N ₂	1	1	298
x20000064	OPF	11	5.45	Ar/N ₂	1.8	1	298
x20000065	OPF	10	2.05	N ₂	1.8	1	298
x20000067	OPF	11	3.87	N ₂	1	0.5	298
	2016		4 0 - 0	Qin <i>et al.</i> (200	0) [36]		
x20000070	FCM	11	10.78	N ₂	0.70-3.34	1	298
x20000071	FCM	5	2.11	N ₂	1	0.99-	298
	1 01			- 12	-	1.39	
x20000072	FCM	7	7.63	N ₂	2	0.99-	298
	1 01	,			_	2.17	
x20000073	FCM	11	5.82	N ₂	3	0.99-	298
A20000075	1 Civi		5.02	112	5	3.44	270
	1	1	T	Dong <i>et al</i> . (20	09) [37]		1
x20000074	FCM	18	7.52	N ₂	0.40-2.10	1	298
	1			Santner et al. 20)13 [38]		1
x20000075	OPF	3	3.64	He	0.85	1-10	393
x20000076	OPF	7	2.00	He/H ₂ O	0.85	2-10	393
x20000077	OPF	4	4.36	He/H ₂ O	0.85	1-4	393

¹ Flame velocity measurement types:

outwardly propagating spherical flame method flame cone method counterflow twin-flame technique

OPF FCM CTF

HFM heat flux burner method

Table S4 Jet stirred reactor (JSR) measurements of hydrogen–oxygen mixtures

ID [.xml]	N_i	σ	Diluents	φ	p / atm	<i>T /</i> K	
Le Cong and Dagaut (2009) [39]							
g0000001psr	20	4.5E-4 (H ₂) 3.1E-4 (H ₂ O)	N_2	0.22	1	800-1050	
g0000002psr	16	1.60E-3 (H ₂) 5.20E-4 (H ₂ O)	N_2	0.54	1	825-1000	
g0000003psr	16	1.60E-3 (H ₂) 1.60E-3 (H ₂ O)	N_2	2.20	1	850-1025	
g0000004psr	24	6.4E-4 (H ₂) 2.6E-4 (H ₂ O)	N_2	0.09	10	820-1150	
g0000005psr	9	2.2E-4 (H ₂) 9.1E-5 (H ₂ O)	N_2	2.27	10	850-1150	
g0000006psr	16	8.9E-4 (H ₂) 3.2E-4 (O ₂)	N ₂ /H ₂ O	0.23	1	886-1097	
g0000007psr	14	8.7E-4 (H ₂) 2.3E-4 (O ₂)	N ₂ /H ₂ O	0.42	1	888-1026	
g0000008psr	16	2.9E-4 (H ₂) 6.9E-4 (O ₂)	N ₂ /H ₂ O	1.13	1	850-1028	
g0000009psr	18	4.2E-4 (H ₂) 4.5E-4 (O ₂)	N ₂ /H ₂ O	2.38	1	850-1049	

Table S5

ID [.xml]	N_i^{-1}	σ	Diluents	φ	p [atm]	<i>T</i> [K]	
Mueller <i>et al.</i> (1999) [40]							
x30000010	15 (57)	6.80E-4 (H ₂) 6.98E-4 (H ₂ O) 3.66E-4 (O ₂)	N_2	0.97	3.02	934	
x30000011	0 (15)	4.54E-3 (H ₂) 4.66E-3 (H ₂ O) 2.23E-3 (O ₂)	N_2	0.97	2.55	935	
x30000012	27 (51)	6.33E-4 (H ₂) 8.04E-4 (H ₂ O) 3.86E-4 (O ₂)	N_2	0.97	3.44	933	
x30000013	48 (57)	2.13E-3 (H ₂) 1.52E-4 (H ₂ O) 1.30E-3 (O ₂)	N_2	0.97	6.00	934	
x30000014	21 (30)	4.97E-5(H ₂) 4.55E-5 (H ₂ O) 2.66E-3 (O ₂)	N_2	0.50	0.30	880	
x30000015	4 (11)	1.03E-4 (H ₂)	N_2	0.74	0.60	897	
x30000016	4 (10)	1.94E-4 (H ₂)	N_2	0.33	0.60	896	
x30000017	0 (6)	5.10E-4 (H ₂)	N_2	0.97	2.55	935	
x30000018	7 (15)	6.20E-4 (H ₂)	N_2	0.33	2.50	943	
x30000019	13 (15)	1.16E-3 (H ₂)	N_2	0.97	15.70	914	
x30000020	7 (10)	3.16E-4 (H ₂)	N_2	0.27	15.70	914	
x30000021	0 (16)	1.15E-2 (H ₂)	N_2	0.29	6.50	884	
x30000022	10 (17)	5.86E-3 (H ₂)	N_2	0.29	6.50	889	
x30000023	12 (17)	1.52E-3 (H ₂)	N_2	0.30	6.50	906	
x30000024	10 (16)	3.68E-4 (H ₂)	N_2	0.30	6.50	914	
x30000025	7 (12)	1.60E-4 (H ₂)	N ₂	0.30	6.50	934	
Yetter et al. (1991) [41]							
x30000026	3 (17)	4.96E-4 (H ₂) 1.33E-4 (O ₂)	N_2	0.28	1	910	

Flow reactor measurements of hydrogen-oxygen mixtures

¹ The numbers of experimental points listed are those measured between fuel depletion of 90% and 10%. Numbers in parenthesis are the total number of experimental point in a dataset.

Table S6

Direct measurements considered in the optimization

Authors	Prime ID Referen		Bath gas	Number of datapoints	$\sigma(\ln k)$			
$R1 H + O_2 = O + OH$								
Masten <i>et al.</i> (1990)	k0000001	[42]	Ar	30	0.10			
Masten et al. (1990)	k0000002	[42]	Ar	14	0.24			
Du and Hessler (1992)	k0000003	[43]	Ar	11	0.10			
Yang et al. (1994)	k0000004	[44]	Ar	20	0.10			
Ryu <i>et al.</i> (1995)	k00000005	[45]	Ar	178	0.10			
Pirraglia et al. (1989)	k0000008	[46]	Ar	159	0.19			
Shin and Michael (1991)	k0000009	[47]	Ar	124	0.27			
Hwang <i>et al.</i> (2005)	k00000012	[48]	Ar	189	0.10			
Hong <i>et al.</i> (2011)	k0000050	k0000050 [49]		20	0.07			
	$R2 O + H_2 = 1$	H + OH						
Sutherland et al. (1986)	k0000018	[50]	Ar	155	0.15			
Ryu et al. (1995)	k00000019	[51]	Ar	50	0.10			
Davidson and Hanson (1990)	k0000020	[52]	Ar	13	0.10			
Presser and Gordon (1985)	k0000021	[53]	Ar	9	0.10			
Light and Matsumoto (1980)	k0000022	[54]	Ar	22	0.17			
Javoy <i>et al.</i> (2000)	k0000035	[55]	Ar	29	0.10			
Natarajan et al. (1987)	k0000036	[56]	Ar	37	0.10			
Natarajan et al. (1987)	k0000037	[56]	Ar	11	0.10			
Sutherland et al. (1986)	k0000038	[50]	Ar	112	0.13			
Sutherland et al. (1986)	k0000039	[50]	Ar	46	0.10			
Yang et al. (1993)	k0000057	[57]	Ar	9	0.15			
	$R3 OH + H_2 =$	$H + H_2O$						
Michael and Sutherland (1988)	k0000023	[58]	Ar	105	0.21			
Oldenborg et al. (1992)	k0000024	[59]	Ar	20	0.10			
Davidson (1988)	k0000025	[60]	Ar	19	0.20			
Frank and Just (1985)	k0000026	[61]	Ar	19	0.12			
Ravishankara <i>et al.</i> (1981)	k0000027	[62]	Ar	10	0.10			
Tully and Ravishankara (1980)	k0000028	[63]	Ar	8	0.10			
Lam <i>et al.</i> (2013)	k0000060	[64]	Ar	21	0.10			
	R8H + OH + M	= H ₂ O + M			0.10			
Halstead and Jenkins (1969)	k0000070	[65]	N ₂	2	0.10			
Halstead and Jenkins (1969)	k0000071	[65]	H ₂	2	0.10			
Halstead and Jenkins (1969)	k0000072	[65]	Ar	2	0.10			
$R9 H + O_2 + M = HO_2 + M$								
Mueller et al. (1998)	L00000007	[00]	N ₂	0	0.10			
A chmon and Harmas (1008)	k0000007	[00]	Ar	4	0.10			
Ashman and Haynes (1998)	k0000010	[0/]	AI N	/	0.10			
Astillian and Haynes (1998)	k0000011 1-0000012	[0/]	IN ₂	10	0.10			
Getzinger and Plair (1963)	1-0000013	[00]	AI N	90	0.13			
Blair and Catzinger (1970)	k0000014	[09]	N ₂	10	0.12			
Michael et al. (2002)	1:0000015	[70]	AI N	20	0.42			
Michael et al. (2002)	1-0000010	[71]	1N2 A r	14	0.10			
Gay and Prott (1071)	1-00000017	[71]	AI Ar	19	0.10			
	$R10 HO_1 + H -$	$-H_1 + O_2$	Al	2	0.20			
Michael et al. (2000) k00000034 xml [73] Ar 28 0.44								
$\frac{113 \text{ HO}_{2000} + \text{OH}_{100} + \text{OH}_{100} + \text{OH}_{100}}{\text{R13 HO}_{100} + \text{OH}_{100} + \text{OH}_{100} + \text{OH}_{100}}$								
Hippler <i>et al</i> (1995)	k00000041	[74]	Ar	16	0.14			
Hong $et al$ (2010)	k00000041	[75]	Ar	10	0.14			
Hong <i>et al.</i> (2010)	k00000012	[76]	Ar	15	0.12			
Sriniyasan <i>et al.</i> (2006)	k00000083	[77]	Ar	24	0.42			
Simi, usun <i>et ut</i> . (2000)	100000000	L''J	* **		0.12			

$R15 HO_2 + HO_2 = H_2O_2 + O_2$								
Hong <i>et al.</i> (2012)	k0000053	[76]	Ar	16	0.19			
Hippler <i>et al.</i> (1990)	k0000061	[78]	Ar	16	0.22			
Hippler <i>et al.</i> (1990)	k0000062	[78]	Ar	27	0.23			
Kappel et al. (2002)	k0000063	3 [79] Ar		13	0.10			
$R16 OH + OH + M = H_2O_2 + M$								
Hong et al. (2009)	k0000032	[80]	Ar	40	0.10			
Hong <i>et al.</i> (2010)	k0000033	[81]	Ar	28	0.10			
Kappel et al. (2002)	k0000045	[79]	Ar	13	0.21			
Kappel et al. (2002)	k0000046	[79]	Ar	7	0.23			
Kappel et al. (2002)	k0000047	[79]	Ar	7	0.31			
Hong <i>et al.</i> (2012)	k0000075	[82]	Ar	18	0.10			
$R18 H_2O_2 + H = H_2 + HO_2$								
Baldwin et al. (1970)	k0000064	[83]	Ar	4	0.10			

Fig. S1

Prior uncertainty parameters for each reaction step considered in the optimization. Symbols show the f(T) values determined at every 100 K from the published rate parameters. Solid lines show the corresponding f(T) functions calculated from the determined covariance matrix of the Arrhenius parameters.

References

- [1] N. Chaumeix, S. Pichon, F. Lafosse, C.E. Paillard, Int. J. Hydrogen Energy 32 (13) (2007) 2216–2226.
- [2] G.A. Pang, D.F. Davidson, R.K. Hanson, Proc. Combust. Inst. 32 (1) (2009) 181-188.
- [3] J. Herzler, C. Naumann, Proc. Combust. Inst. 32 (1) (2009) 213-220.
- [4] E.L. Petersen, D.F. Davidson, M. Röhrig, R.K. Hanson, Shock Waves (1996) 941–946.
- [5] R.K. Cheng, A.K. Oppenheim, Combust. Flame 58 (1984) 125–139.
- [6] G.B. Skinner, G.H. Ringrose, J. Chem. Phys. 42 (1965) 2190-2192.
- [7] G.L. Schott, J.L. Kinsey, J. Chem. Phys. 29 (1958) 1177–1182.
- [8] M.W. Slack, Combust. Flame 28 (1977) 241-249.
- [9] D. Fujimoto, M. Suzuki, Memoirs Defense Academy, Japan 7 (3) (1967) 1037-1046.

[10] E.L. Petersen, D.M. Kalitan, M.J.A. Rickard, in: Proceedings of the Third Joint Meeting of the U.S. Sections of The Combustion Institute, Chicago, IL, 2003.

- [11] K.A. Bhaskaran, M.C. Gupta, T.H. Just, Combust. Flame 21 (1) (1973) 45–48.
- [12] B.L. Wang, H. Olivier, H. Gronig, Combust. Flame 133 (2003) 93-106.
- [13] T. Asaba, W.C. Gardiner, R.F. Stubbelman, Proc. Combust. Inst. 10 (1965) 295–302.
- [14] Y. Zhang, Z. Huang, L. Wei, J. Zhang, C.K. Law, Combust. Flame 159 (3) (2012) 918–931.
- [15] C. Naumann, J. Herzler, P. Griebel, H.J. Curran, A. Kéromnès, I. Mantzaras, in: 7th Framework Programme FP7-
- ENERGY-2008-TREN-1 ENERGY-2008-6-CLEAN COAL TECHNOLOGIES, Deliverable 1.1.3, 2011.
- [16] A. Kéromnès, W.K. Metcalfe, K.A. Heufer, N. Donohoe, A.K. Das, C.-J. Sung, J. Herzler, C. Naumann, P. Griebel,
- O. Mathieu, M.C. Krejci, E.L. Petersen, W.J. Pitz, H.J. Curran, Combust. Flame 160 (6) (2013) 995-1011.
- [17] G.W. Koroll, R.K. Kumar, E.M. Bowles, Combust. Flame 94 (3) (1993) 330-340.
- [18] D. Bradley, M. Lawes, K. Liu, S. Verhelst, R. Woolley, Combust. Flame 149 (2007) 162–172.
- [19] S.C. Taylor, Burning Velocity and the Influence of Flame Stretch, University of Leeds, 1991
- [20] F. Takahashi, M. Mizomoto, S. Ikai, Alternative Energy Sources III 5 (1983) 447-457.
- [21] S.D. Tse, D.L. Zhu, C.K. Law, Proc. Combust. Inst. 28 (2000) 1793-1800.
- [22] K.T. Aung, M.I. Hassan, G.M. Faeth, Combust. Flame 109 (1997) 1-24.
- [23] T. Iljima, T. Takeno, Combust. Flame 65 (1986) 35–43.
- [24] C.M. Vagelopoulos, F.N. Egolfopoulos, C.K. Law, Proc. Combust. Inst. 25 (1994) 1341-1347.
- [25] F.N. Egolfopoulos, C.K. Law, Proc. Combust. Inst. 23 (1990) 333-340.
- [26] R.T.E. Hermanns, A.A. Konnov, R.J.M. Bastiaans, L.P.H. de Goey, Energ. Fuel 21 (4) (2007) 1977–1981.
- [27] N. Lamoureux, N. Djebaili-Chaumeix, C.E. Paillard, Exp. Therm. Fluid Sci. 27 (2003) 385–393.
- [28] K.T. Aung, M.I. Hassan, G.M. Faeth, Combust. Flame 112 (1998) 1–15.
- [29] O.C. Kwon, G.M. Faeth, Combust. Flame 124 (2001) 590-610.
- [30] M.P. Burke, M. Chaos, F.L. Dryer, Y. Ju, Combust. Flame 157 (2010) 618-631.
- [31] W. Tang, K. Brezinsky, Int. J. Chem. Kinet. 38 (2006) 75–97.
- [32] E. Hu, Z. Huang, J. He, C. Jin, J. Zheng, Int. J. Hydrogen Energy 34 (11) (2009) 4876–4888.
- [33] Z. Huang, Y. Zhang, K. Zeng, B. Liu, Q. Wang, D. Jiang, Combust. Flame 146 (1-2) (2006) 302-311.
- [34] M.P. Burke, F.L. Dryer, Y. Ju, Proc. Combust. Inst. 33 (1) (2011) 905-912.
- [35] L. Qiao, Y. Gu, W.J.A. Dahm, E.S. Oran, G.M. Faeth, Combust. Flame 151 (1-2) (2007) 196-208.
- [36] X. Qin, H. Kobayashi, T. Niioka, Exp. Therm. Fluid Sci. 21 (2000) 58-63.
- [37] C. Dong, Q. Zhou, Q. Zhao, Y. Zhang, T. Xu, S. Hui, Fuel 88 (10) (2009) 1858–1863.
- [38] J. Santner, F.L. Dryer, Y. Ju, Proc. Combust. Inst. 34 (1) (2013) 719–726.
- [39] T. Le Cong, P. Dagaut, Energ. Fuel 23 (1) (2009) 725–734.
- [40] M.A. Mueller, T.J. Kim, R.A. Yetter, F.L. Dryer, Int. J. Chem. Kinet. 31 (1999) 113-125.
- [41] R.A. Yetter, F.L. Dryer, H. Rabitz, Combust. Sci. Technol. 79 (1991) 129–140.
- [42] D.A. Masten, R.K. Hanson, C.T. Bowman, J. Phys. Chem. 94 (1990) 7119-7128.
- [43] H. Du, J.P. Hessler, J. Chem. Phys. 96 (1992) 1077–1092.
- [44] H. Yang, W.C. Gardiner, K.S. Shin, N. Fujii, Chem. Phys. Lett. 231 (4-6) (1994) 449-453.
- [45] S.O. Ryu, S.M. Hwang, M.J. Rabinowitz, J. Phys. Chem. 99 (1995) 13984–13991.
- [46] A.N. Pirraglia, J.V. Michael, J.W. Sutherland, R.B. Klemm, J. Phys. Chem. 93 (1989) 282–291.
- [47] K.S. Shin, J.V. Michael, J. Chem. Phys. 95 (1991) 262–273.
- [48] S.M. Hwang, S.O. Ryu, K.J. De Witt, M.J. Rabinowitz, Chem. Phys. Lett. 408 (1-3) (2005) 107–111.
- [49] Z. Hong, D.F. Davidson, E.A. Barbour, R.K. Hanson, Proceedings of the Combustion Institute 33 (2011) 309–316.
- [50] J.W. Sutherland, J.V. Michael, A.N. Pirraglia, F.L. Nesbitt, R.B. Klemm, Proc. Combust. Inst. 21 (1986) 929–941.
- [51] S.O. Ryu, S.M. Hwang, M.J. Rabinowitz, Chem. Phys. Lett. 242 (3) (1995) 279-284.
- [52] D.F. Davidson, R.K. Hanson, Combust. Flame 82 (3-4) (1990) 445–447.
- [53] N. Presser, R.J. Gordon, J. Chem. Phys. 82 (3) (1985) 1291-1297.
- [54] G.C. Light, J.H. Matsumoto, Int. J. Chem. Kinet. 7 (1980) 451-468.

- [55] S. Javoy, V. Naudet, S. Abid, C.E. Paillard, International Journal of Chemical Kinetics 32 (2000) 686-695.
- [56] K. Natarajan, P. Roth, Combust. Flame 70 (1987) 267-279.
- [57] H.X. Yang, K.S. Shin, W. Gardiner, Chem. Phys. Lett. 207 (1) (1993) 69-74.
- [58] J.V. Michael, J.W. Sutherland, J. Phys. Chem. 92 (1988) 3853-3857.
- [59] R.C. Oldenborg, G.W. Loge, D.M. Harradine, K.R. Winn, J. Chem. Phys. 96 (1992) 8426–8430.
- [60] D.F. Davidson, A.Y. Chang, R.K. Hanson, Proceedings of the Combustion Institute 22 (1988) 1877-1885.
- [61] P. Frank, T.H. Just, Ber. Bunsenges. Phys. Chem. 89 (1985) 181–187.
- [62] A.R. Ravishankara, J.M. Nicovich, R.L. Thompson, F.P. Tully, J. Phys. Chem. 85 (1981) 2498–2503.
- [63] F.P. Tully, A.R. Ravishankara, J. Phys. Chem. 84 (1980) 3126–3130.
- [64] K.Y. Lam, D.F. Davidson, R.K. Hanson, Int. J. Chem. Kinet. 45 (6) (2013) 363-373.
- [65] C.J. Halstead, D.R. Jenkins, Proc. Combust. Inst. 12 (1) (1969) 979-987.
- [66] M.A. Mueller, R.A. Yetter, F.L. Dryer, in: Proc. Combust. Inst., 1998, pp. 177-184.
- [67] P.J. Ashman, B.S. Haynes, in: Proc. Combust. Inst., 1998, pp. 185–191.
- [68] R.W. Getzinger, G.L. Schott, J. Chem. Phys. 43 (9) (1965) 3237-3247.
- [69] R.W. Getzinger, L.S. Blair, Combust. Flame 13 (3) (1969) 271–284.
- [70] L.S. Blair, R.W. Getzinger, Combust. Flame 14 (1) (1970) 5-12.
- [71] J.V. Michael, M.-C. Su, J.W. Sutherland, J.J. Carroll, A.F. Wagner, J. Phys. Chem. A 106 (2002) 5297–5313.
- [72] A. Gay, N.H. Pratt, Proc. Int. Symp. Shock Tubes Waves 8 (1971).
- [73] J.V. Michael, J.W. Sutherland, L.B. Harding, A.F. Wagner, in: Proc. Combust. Inst., 2000, pp. 1471–1478.
- [74] H. Hippler, H. Neunaber, J. Troe, J. Chem. Phys. 103 (1995) 3510-3516.
- [75] Z. Hong, S.S. Vasu, D.F. Davidson, R.K. Hanson, Journal of Physical Chemistry A 114 (2010) 5520-5525.
- [76] Z. Hong, K.-Y. Lam, R. Sur, S. Wang, D.F. Davidson, R.K. Hanson, Proceedings of the Combustion Institute 34 (2012).
- [77] N.K. Srinivasan, M.-C. Su, J.W. Sutherland, J.V. Michael, B. Ruscic, J. Phys. Chem. A 110 (21) (2006) 6602–6607.
- [78] H. Hippler, J. Troe, J. Willner, J. Chem. Phys. 93 (1990) 1755–1760.
- [79] C. Kappel, K. Luther, J. Troe, Phys. Chem. Chem. Phys. 4 (2002) 4392–4398.
- [80] Z. Hong, A. Farooq, E.A. Barbour, D.F. Davidson, R.K. Hanson, J. Phys. Chem. A 113 (2009) 12919–12925.
- [81] Z. Hong, R.D. Cook, D.F. Davidson, R.K. Hanson, J. Phys. Chem. A 114 (2010) 5718–5727.
- [82] Z. Hong, D.F. Davidson, K.-Y. Lam, R.K. Hanson, Combust. Flame 159 (10) (2012) 3007-3013.
- [83] R.R. Baldwin, D. Brattan, B. Tunnicliffe, R.W. Walker, S.J. Webster, Combust. Flame 15 (2) (1970) 133-142.