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ABSTRACT: Methane is the major component of natural gas, which is one of the most widely 

used fuels. Large amount of shock tube (ST) and rapid compression machine (RCM) ignition delay 

measurements are available in the literature for validating its detailed combustion mechanisms. A 

large set of experimental data was collected for methane combustion: ignition studies in STs (4939 

data points in 574 datasets) and in RCMs (582/69). In total, 5521 data points in 643 datasets from 

76 publications were collected covering wide ranges of temperature T, pressure p, equivalence 
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2

ratio φ and diluent concentration. For a quantitative assessment of methane combustion models, a 

least-squares-function is used to show the agreement between measurements and simulations. 13 

recent methane combustion mechanisms were tested against these experimental data, and the 

dependence of their predictions on the types of experiments and the various experimental 

conditions was investigated. The mechanism comparison results show that most mechanisms could 

reproduce well the experimental ignition delay times (IDTs) measured in STs. IDTs measured in 

RCMs and STs at low temperatures (below 1000 K) could also be well predicted by several 

mechanisms. SanDiego-2014, Caltech-2015, Aramco-II-2016 and Glarborg-2018 were found to 

be the most accurate mechanisms for the simulation of methane combustion under ST experimental 

conditions, while Aramco-II-2016 had the smallest prediction error under RCM conditions. Local 

sensitivity analysis was carried out to determine the effect of reactions on the simulation results 

obtained under given experimental conditions and to identify the critical reaction steps for 

improving the methane combustion models.
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1. Introduction

Large amount of combustion experimental data was published in the last decades, with 

continuously improved measurement accuracy. However, most mechanisms were originally 

developed based on data obtained under narrow ranges of experimental conditions, and the 

subsequent validation studies of published mechanisms are rare. Therefore, we have investigated 

a series of detailed reaction mechanisms for the combustion of hydrogen 1, synthesis gas 2, 

methanol 3 and ethanol 4. These studies led to building up a comprehensive experimental database 

5, and also these works demonstrated that there are excellent mechanisms for the combustion of 

these fuels. It was also shown that some of the widely used mechanisms poorly reproduce many 

of the experimental data points. Furthermore, even the best mechanisms may perform surprisingly 

badly under some specific conditions. This conclusion indicates that it is meaningful to 

systematically evaluate the combustion mechanisms also for further fuels. 

Due to the accumulating knowledge and understanding in combustion chemistry and gas 

kinetics, and using the increasing power of computers and simulation codes, more and more 

mechanisms were generated in the recent decades. The study of Lu and Law 6 indicated that in the 

last twenty years not only the number of published combustion mechanisms increased, but also 

there was a significant increase in the numbers of species and reactions in the new mechanisms. 

However, in many cases the performance of these new mechanisms was not investigated under a 

wider range of conditions. 

One of the most important fuels is natural gas, which is widely utilized for electricity production, 

heating and transport. The main ingredient of natural gas is methane, and therefore methane 

combustion is one of the practically most important chemical processes. Knowing the combustion 

kinetics of methane better, more efficient natural gas engines and gas turbines can be designed. 
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4

Ignition delay time is one of the most important characteristic properties of the combustion of 

methane containing gas mixtures. Majority of such experiments was carried out in STs, but some 

others also in RCMs. Jach et al. 7 recently published a paper on the comparison of the performance 

of several hydrocarbon combustion mechanisms in reproduction of IDTs of C1C4 hydrocarbons, 

but this study was not comprehensive for methane and the tests were based only on ST 

measurements. Baigmohammadi et al. 8 collected experimental data on the ignition of C1C2 

hydrocarbons covering a wide range of experimental conditions (temperature ~8002000K, 

pressure ~180 bar, equivalence ratio ~0.52, dilution ~7590%), and compared the simulation 

results obtained by using the C3-NUIG mechanism with the experimental data. However, the 

amount of data collected for methane ignition was limited and some regions of experimental 

conditions were not covered, such as initial temperatures above 2000 K, equivalence ratios below 

0.5 and above 2.0, and dilution ratios below 75%. Jach et al. 9 investigated the performance of 15 

detailed reaction mechanisms for the reproduction of ignition delay times of C2–C6 alkenes and 

acetylene. Lee et al. 10 tested seven widely used syngas/biogas mechanisms based on a limited 

amount of IDT experimental data in a wide condition range (907-2030K, 1.24-70 atm), and 

suggested modified rate parameters for reactions H + O2 (+CO2) = HO2 (+CO2) and CH4 + OH = 

CH3 + H2O.

In this paper the general methodology that we have previously developed and applied for the 

comparison of combustion mechanisms of other fuels 1–4 is employed for methane combustion 

based on ST and RCM ignition delay measurements. To support related research in the future, a 

large amount of experimental data from STs and RCMs was collected in the ReSpechTh database 

5, using the latest version of ReSpecTh Kinetics Data Format. Improvement of the method for 

calculating the standard deviations of experimental datasets was implemented by considering both 
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5

the statistical and experimental errors. The performance of 13 widely used detailed combustion 

mechanisms was compared according to the reproduction of the ignition delays of methane, and 

four OHEX submechanisms were compared. 

Engineering computational fluid dynamics simulations require accurate mechanisms under 

specific conditions. This is one of the reasons why in this paper a quantitative assessment of the 

accuracy of the combustion mechanisms was carried out separately in various ranges of pressure, 

temperature, equivalence ratio and diluent ratio. Special attention was paid to the performance of 

the mechanisms at low temperatures (<1000K) and the reproducibility of IDTs with different 

lengths. Local sensitivity analysis was carried out for identifying the most important reactions for 

the reproduction of IDTs, and the rate coefficients of these reactions used in the best mechanisms 

were compared.
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2. Methodology

Agreement of experimental data and simulation results is investigated here by using the 

following objective function:

𝐸 =
1
𝑁

𝑁

∑
𝑖 = 1

𝐸𝑖

and

𝐸𝑖 =
1
𝑁𝑖

𝑁𝑖

∑
𝑗 = 1

(𝑌sim
𝑖𝑗 ― 𝑌exp

𝑖𝑗

𝜎(𝑌exp
𝑖𝑗 ) )

2

where

𝑌𝑖𝑗 = { 𝑦𝑖𝑗       𝑖𝑓 𝜎(𝑦exp
𝑖𝑗 ) ≈ constant

ln 𝑦𝑖𝑗      𝑖𝑓 𝜎(ln 𝑦exp
𝑖𝑗 ) ≈ constant

Here N is the number of datasets and Ni is the number of data points in the i-th dataset. A dataset 

contains those data points that were measured on the same apparatus at the same time under similar 

conditions except for one that was systematically changed. Values  and  are the j-th 𝑦exp
𝑖𝑗  𝜎(𝑦exp

𝑖𝑗 )

data point and its standard deviation, respectively, in the i-th dataset. The corresponding simulated 

(modeled) value is  obtained from a simulation using an appropriate detailed mechanism and 𝑌sim
𝑖𝑗

simulation method. IDT measurement errors are typically relative ones (the scatter is proportional 

to the value of ), therefore we used the option .𝑦𝑖𝑗 𝑌𝑖𝑗 = ln 𝑦𝑖𝑗

Error function values Ei belonging to dataset i, and E belonging to all considered N datasets are 

expected to be near unity if the chemical kinetic model is accurate, and the deviations of the 

measured and simulated results are caused by the scatter of the experimental data only. Note that 

due to the squaring in the definition of E, a twice as high deviation of the simulated and 

experimental values leads to a four times higher value of E. This objective function has been used 
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7

in our previous studies for assessing the performance of combustion mechanisms in the estimation 

of rate parameters from experimental data, comparison of reaction mechanisms and mechanism 

optimization 1–4,11–19.

In addition to the average error function E, the mean -normalized signed deviation D was used 

to characterize the behavior of the mechanisms: 

 𝐷 =
1
𝑁

𝑁

∑
𝑖 = 1

1
𝑁𝑖

𝑁𝑖

∑
𝑗 = 1

𝑌sim
𝑖𝑗 ― 𝑌exp

𝑖𝑗

𝜎(𝑌exp
𝑖𝑗 )

using the same transformation yij  Yij as above. In contrast to E, the sign of the difference 

 is maintained in the definition of D, therefore trends such as systematic under- or over-
exp

ij
sim

ij YY 

prediction are captured in the D values. This is meaningful, if the investigated model results are of 

the same type, like ignition delay time in this paper. However, mean signed deviation D cannot be 

used for the characterization of accuracy, since positive and negative deviations belonging to 

different data points can cancel each other out and the resulting averaged value would erroneously 

suggest good overall agreement. The D value plots may deliver a better understanding of the trends 

associated with changes of certain operating conditions and should be interpreted alongside with 

the corresponding E value plots. 

It is possible to characterize the similarity of simulation results for a given data series obtained 

using two different mechanisms by calculating the Pearson correlation coefficients of local 

absolute deviations ( ), which are defined as:𝐷 
𝑖(𝑗)

𝐷𝑎
𝑖 (𝑗) = 𝑌sim_𝑎

𝑖𝑗 ― 𝑌exp
𝑖𝑗

  𝐷𝑏
𝑖 (𝑗) = 𝑌sim_𝑏

𝑖𝑗 ― 𝑌exp
𝑖𝑗
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8

where simulation results  and   are calculated using reaction mechanisms a and b, 𝑌sim_𝑎
𝑖𝑗 𝑌sim_𝑏

𝑖𝑗

respectively. Let  and  denote the mean of values  and . The Pearson correlation 𝐷𝑎
𝑖 𝐷𝑏

𝑖 𝐷𝑎
𝑖 (𝑗) 𝐷𝑏

𝑖 (𝑗)

coefficient for dataset i can be calculated by the formula:

𝐶𝑎𝑏
𝑖 =  

∑𝑁𝑖

𝑗 (𝐷𝑎
𝑖 (𝑗) ― 𝐷𝑎

𝑖 )(𝐷𝑏
𝑖 (𝑗) ― 𝐷𝑏

𝑖 )

∑𝑁𝑖

𝑗 (𝐷𝑎
𝑖 (𝑗) ― 𝐷𝑎

𝑖 )2 ∑𝑁𝑖

𝑗 (𝐷𝑏
𝑖 (𝑗) ― 𝐷𝑏

𝑖 )2 

In the last step, the correlation coefficients calculated for all N datasets are averaged:

𝐶𝑎𝑏 =
1
𝑁

𝑁

∑
𝑖 = 1

𝐶𝑎𝑏
𝑖

A discussion on the comparisons of the performance of mechanisms using these correlation 

coefficients can be found in references 1, 2 and 9. 

The standard deviation of a dataset was estimated based on the statistical scatter of the data (𝜎 
stat,𝑖

 and the reported experimental uncertainty ( , in a way similar to the approach used in 3:) 𝜎 
exp,𝑖)

𝜎𝑖𝑗 = 𝜎2
stat,𝑖 + 𝜎2

exp,𝑖𝑗

The statistical noise of a data series ( ) was determined by finding an optimal trendline (𝜎stat,𝑖 𝑌fit1
 (

) for the transformed experimental data series ( =1,,,, ) using code 𝑥 ) 𝑌exp
𝑖𝑗 = 𝑌exp

𝑖 (𝑥𝑖𝑗), 𝑗 𝑁𝑗

MinimalSplineFit 20. The idea behind this method is that the transformed values of an experimental 

dataset ( ) versus the changing condition variable ( , e.g. inverse temperature, equivalence 𝑌exp
𝑖𝑗 𝑥

ratio) can be considered as a smooth function with a symmetrically distributed noise added. If 

these data are fitted with flexible functions ( ), such as polynomials or spline functions, of 𝑦fit1
𝑖 (𝑥𝑗)

increasing complexity (i.e. with more parameters, e.g. higher order, more knots), the fits first 

reconstruct the underlying smooth function. This way the error reduces steeply, whereas later only 

the remaining noise is fitted, which cannot be captured efficiently. As a result, an optimal fitting 
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9

curve can be determined, which efficiently approximates the noise-free experimental data series, 

thus it can be used to give an unbiased estimate to the variance of the statistical noise ( :𝜎2
stat)

𝜎2
stat,𝑖 =

∑𝑁𝑖

𝑗 = 1(𝑌exp
𝑖𝑗 ― 𝑌fit1

𝑖 (𝑥𝑖𝑗))2

𝑁DOF,𝑖

Here  is the trendline value that corresponds to the experimental point  ,𝑌fit1
𝑖 (𝑥𝑖𝑗) 𝑌exp

𝑖𝑗  𝑁DOF,𝑖 = 𝑁𝑖

 is the number of degrees of freedom, and  is the number of parameters in the optimal ― 𝑛fit1,𝑖 𝑛fit1,𝑖

fitting function. More details are available in ref. 20. 

For the ignition delay measurements, the experimental uncertainty could be expressed 21 as:

𝜎exp,𝑖𝑗 =
d𝑦exp

𝑖𝑗

𝑦exp
𝑖𝑗

Here  and  are the experimental IDT and the corresponding uncertainty of i-th data point 𝑦𝑒𝑥𝑝
𝑖𝑗 d𝑦𝑒𝑥𝑝

𝑖𝑗

in j-th dataset.

In the present study, we used the reported experimental uncertainty of IDT whenever it was 

available in the original article. However, in several publications the uncertainty of IDT was not 

provided, but the authors indicated the uncertainty of temperature and pressure. In these cases, we 

derived the IDT uncertainty from the available P and T uncertainty. Usually the relationship 

between IDT, and pressure and temperature can be expressed by equation:

𝑦fit2
𝑖𝑗 = 𝐴fit2,𝑖𝑃𝑖𝑗

𝑎fit2,𝑖𝑒
𝑏fit2,𝑖

𝑇𝑖𝑗

Here  is the approximated IDT obtained by two-variate least squares fitting,  and  are the 𝑦fit2
𝑖𝑗 𝑃𝑖𝑗 𝑇𝑖𝑗

experimental pressure and temperature,  is the fitted pre-exponential factor, while  and 𝐴fit2,𝑖 𝑎fit2,𝑖

 are fitted parameters related to pressure and temperature, respectively. Description of the 𝑏fit2,𝑖

fitting process is available in Part 2 of the Supplementary Material. Derivation of the function 

above yields:
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10

𝑑𝑦exp
𝑖𝑗 = (𝐴fit2,𝑖𝑎fit2,𝑖𝑒

𝑏fit2,𝑖

𝑇𝑖𝑗 𝑃𝑖𝑗
𝑎fit2,𝑖 ― 1)

2

+
1

𝑇𝑖𝑗
(𝐴fit2,𝑖𝑏fit2,𝑖𝑒

𝑏fit2,𝑖

𝑇𝑖𝑗 𝑃𝑖𝑗
𝑎fit2,𝑖)

2

If the uncertainty of either temperature or pressure is known, then the method can also be used 

for one variable only. The procedure described above follows the approach of Zhang et al. 21 for 

the calculation of the experimental uncertainty of IDT measurements. This procedure results in 

different standard deviation  for each data point in some datasets, which is available in the 𝑖

Supplementary Material. 

If the experimental uncertainty of IDT, temperature, or pressure was not reported by the authors 

for a dataset, then the standard deviation of the dataset was considered to be identical to . In 𝜎 
stat,𝑖

the cases of some measurements, the standard deviation  calculated in this way was 𝜎𝑖𝑗

unrealistically low. Therefore, it was replaced by a minimal assumed standard deviation, which 

was 10% relative error for IDTs. 

However, it is possible that some experimental data have large systematic uncertainty that could 

not be captured by either the reported experimental uncertainty or the statistical scatter. This is 

why data points that could not be reproduced within 3σ error by any of the mechanisms were 

excluded from the mechanism comparison study, thus not all collected data were used at the 

assessment of the mechanisms. Also, the data were taken into account with different weights, since 

the equations for the calculation of E and D include that more uncertain data were considered with 

lower weight.
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11

3. The investigated mechanisms

Our aim was to test widely used methane combustion mechanisms published in the last two 

decades. In the forthcoming discussions, an identifier of each mechanism is used, which combines 

the name of the author or research group and the year of publication.

Table 1. General properties of the collected reaction mechanisms: number of species and reactions 

involved, the possible inert bath gas (aside from N2), and the conditions of methane ignition delay 

measurements at which the mechanisms were originally validated.

Two mechanisms (GRI3.0-1999 22 and Leeds-2001 23) were originally developed for natural gas 

combustion, while the other mechanisms were elaborated for the combustion of hydrocarbons or 

oxygenates 24–34, but have also been used to interpret methane combustion data. In the order of 

publishing year, Table 1 lists all the 13 mechanisms and provides further information about size 

Development and validation conditionsNo. Mechanisms ID Ref. Reactions/ 
Species 
Number

Diluents

Temperature / K Pressure / atm  Dilution Ratio / %

1 GRI3.0-1999 22 325 / 53 Ar/- 1323 - 2036 1.6 - 83.9 0.5 - 5.01 53.4 - 99.16

2 Leeds-2001 23 175 / 37 Ar/- 1400 - 2050 1.56 - 29 0.2 – 2 66.7 - 97.8

3 USC-II-2007 24 784 / 112 Ar/He No validation based on CH4 – IDT experiment.

4 Konnov-2009 25 1231 / 129 Ar/- 800 - 2000 1.5 - 20 0.5 - 0.75 75.05 – 99

5 GDF-Kin-2012 26 1144 / 141 Ar/He 886.85 - 2015 1.87 - 22.38 0.4 – 1 71.5 – 99

6 SanDiego-2014 27 247 / 50 Ar/He 1045 - 2050 2.96 - 256.6 0.4 – 6 33.3 - 90.9

7 CRECK-2014 28 2642 / 107 Ar/He No validation based on CH4 – IDT experiment.

8 Caltech-2015 29 1156 / 192 Ar/- 1348 - 1881 1.56 - 4.83 0.2 – 5 53.4 - 78.4

9 Aramco-II-2016 30 2716 / 502 Ar/He 1040 - 2584 1.46 - 260 0.1 – 6 33.3 – 97

10 SanDiego-2016 31 268 / 57 Ar/He 1045 - 2050 2.96 - 256.6 0.4 – 6 33.3 - 90.9

11 FFCM-I-2016 32 291 / 38 Ar/He 1408.1 - 2454 1 - 83.9 0.04 - 5.01 53.4 - 99.16

12 Konnov-2017 33 1236 / 107 Ar/He No validation based on CH4 – IDT experiment.

13 Glarborg-2018 34 1407 / 154 Ar/He 908 - 1665 6.9 - 456 0.32 – 3 55 – 90
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12

and included diluents. Although the Aramco mechanism was continuously updated in the recent 

years, the methane part was updated in 2016 for the last time, therefore this version is used in the 

present study. Figure 1 shows the condition ranges (temperature, pressure, equivalence ratio, and 

diluent ratio) of validating measurements of methane ignition delays used for the development of 

these mechanisms. Fig.1 indicates that these mechanisms have not been validated under several 

specific conditions, such as at low pressure (< 1 atm) and low diluent ratio (< 33.3%). The 

performance of the 13 mechanisms under these conditions will be presented in Section 6.1.

All mechanisms can handle N2 and Ar bath gases, while only four mechanisms do not include 

helium as a possible bath gas. For each mechanism, their own thermochemical data were used as 

published online and/or provided by the authors.

Figure 1. Condition (temperature, pressure, equivalence ratio, and diluent ratio) ranges of methane 

IDT experimental data originally used for the validation of the mechanisms. The last columns 

show the experimental condition ranges used for testing the mechanisms in this study. Mechanisms 

USC-II-2007, CRECK-2014, and Konnov-2017 are not included as they were not validated for 

methane ignition delay data by their developers
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13

4. Collection of experimental data

The combustion characteristics of mixtures containing methane have been studied extensively. 

In this work we consider only those experiments in which the reactant mixture contains methane, 

but no larger hydrocarbons or oxygenated species. This means that mixtures of methane and H2 or 

CO are investigated in this paper, but no mixtures containing ethane or methanol. Having this 

restriction on the initial chemical composition, the datasets to be considered are still numerous, 

close to two thousand. Therefore, we decided to focus only on ignition delay time measurement in 

this study. An extensive literature review was performed, and 574 datasets were collected from ST 

and 69 datasets from RCM measurements, including 5521 data points in total. 

The collection of IDT measurements in STs 35–103 covers a wide range of conditions. The initial 

temperature and pressure were varied in the range of 803–2800 K and 0.069–481.4 atm, 

respectively; the equivalence ratio was changed between 0.03 and 8.0; the mole fraction of diluent 

concentration was within the interval of 0–99.7%. In some cases, several different experimental 

IDTs were deduced from the same experiment in such a way that different profiles, such as 

pressure, excited OH radical, or other species profiles were measured simultaneously. In the 

present study, we added all these kinds of IDT measurements to the database but used only one of 

them for mechanism comparison. The priority order of IDT definitions was based on excited OH, 

excited CH, pressure, and other species. Therefore, less data were utilized here than actually 

collected and encoded in XML files, but the additional experimental data are also available for the 

combustion community for further studies. Also, measurements with helium bath gas were not 

used, because there were relatively few such measurements and also we wanted to make a 

comparison of all mechanisms using the same sets of measurements. Finally, 3403 data points in 

484 datasets extracted from 69 publications were used for testing the mechanisms. 
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Table 2. A summary of methane experimental data used in the mechanism comparison by type of 

measurement and experimental facility. The table includes the numbers of datasets and data points 

used, ranges for pressure p, temperature T, equivalence ratio , and the combinations of fuels and 

diluents together with the number of corresponding data points. PRR stands for pressure rise rate.

As for the conditions of RCM experiments 26,43,63,104–107, the ranges of temperature and pressure 

were 869.9 – 1200 K, and 9.87 – 156.62 atm, respectively; equivalence ratio and diluent ratio were 

changed between 0.3 – 2.0 and 62.58 – 90%, respectively. All in all, 582 data points included in 

68 datasets were extracted from 7 articles. All detailed information about the ST and RCM 

experiments can be found in Tables A and B, respectively, of the Supplementary. 

An overview of the regions of initial conditions covered and diluents investigated is shown in 

Table 2. Although the conditions in the listed ranges are not represented uniformly, the provided 

numbers may serve as an outline for the ranges of conditions. The detailed list of data arranged in 

datasets with references is given in Tables A and B of the Supplementary Material.

Type of measurement No. of 
datasets

No. of 
data points

 / K𝑇  / atm𝑝  Fuels Diluents

ST without PRR 387 3557 803 – 2800 0.069 – 481.4 0.03 – 8 CH4 - 2997
CH4/H2 - 432
CH4/CO - 57
CH4/H2/CO - 71

Ar - 2259
Ar/N2 - 86
Ar/N2/CO2 - 25
Ar/CO2 - 53
Ar/CO2/H2O – 33
Ar/H2O - 7
N2 - 879
N2/CO2 - 27
N2/CO2/H2O - 39
N2/H2O - 23
CO2 - 39
No diluent – 87

ST with PRR 97 846 1020 - 2150 0.987 – 44 0.3 - 2.0 CH4 - 595
CH4/H2 - 251

Ar – 514
N2 - 258
N2/CO2 – 74

RCM 69 582 869.9 - 1200 9.87 – 156.62 0.3 – 2.0 CH4 - 467
CH4/H2 - 75
CH4/CO - 16
CH4/H2/CO - 24

Ar – 257
N2 - 21
Ar/N2 – 304
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5. Simulation of experiments

All the collected experimental data were encoded in ReSpecTh Kinetics Data Format v2.3 

(RKDF2.3) 108 XML files. The RKD format is an XML data format for the storage of indirect 

combustion measurements and rate coefficient determinations by direct gas kinetics experiments 

and theoretical calculations. The RKD format is a modified and extended version of the PrIMe 

Kinetics Data Format 109. All the prepared XML files are available in the ReSpecTh Information 

System 5. 

The RKD files contain all information required for the simulation of the experiments, such as 

initial compositions, temperature, pressure and IDT definition. Usage of these files allowed the 

fully automatized run of thousands of simulations. In principle, the complete investigation of a 

mechanism against several thousand experimental data points can be carried out in a single run 

using these files and the Optima++ environment 110. Both simulation packages FlameMaster 111 

(FM) and OpenSMOKE++ 112,113 (OS) were used. For the ST data (shock tubes with constant 

pressure) all calculations were carried out with both simulation codes and the agreement of the 

calculated IDTs were always better than 1%. For the simulation of the experiments with 

pressure/volume profiles, i.e. for the ST-PRR and RCM experiments, FM simulations ran much 

slower and therefore OS was used routinely. In several points the OS results were checked with 

FM simulations and again good agreement (within 1%) was found.

5.1 Shock tube simulations

The IDT in a reflected ST experiment is interpreted as the time interval between the arrival of 

the reflected shock wave and the onset of a well measurable characteristic state. This state was 

extracted from the simulated pressure or concentration profiles. We found that in the experimental 
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papers dealing with ST methane ignition 37 different definitions of IDT have been used. These 

definitions, and the numbers of the related datasets and data points are listed in Table 3.

Table 3. A summary of various designations of IDTs as defined in the experiments. OHEX and 

CHEX denote electronically excited OH and CH species, respectively.

* These data points were not used at the comparison of the mechanisms since these IDT definitions are not feasible in this study.

No. The definition of IDT Number of 
datasets

Number of data 
points

1 Root of the tangent line at the inflection point of p(t) 111 792
2 Root of the tangent line at the first inflection point of the [OH] profile 3 9
3 Root of the tangent line at the first inflection point of the [OHEX] profile 51 472
4 Root of the tangent line at the first inflection point of the [CH] profile 2 3
5 Root of the tangent line at the first inflection point of the [CHEX] profile 101 744
6 Root of the tangent line at the inflection point of the [CH4] profile 35 201
7 Root of the tangent line at the first inflection point of the [CH3] profile 2 24
8 Root of the tangent line at the inflection point of the [CO2] profile 11 91
9 Root of the tangent line at the inflection point of the [O2] profile 3 31
10 Root of the tangent line at the first inflection point of the [H2O] profile 2 14
11 Root of the tangent line at the inflection point of the [soot] profile * 1 6
12 Time of the first inflection point of p(t) 73 968
13 Time of the first inflection point of the [OHEX] profile 32 346
14 Time of the first inflection point of the [CHEX] profile 4 147
15 Time of maximum of [OH] profile 9 33
16 Time of maximum of [OHEX] profile 23 181
17 Time of maximum of [O] profile 6 44
18 Time of maximum of [O]×[CO] profile ** 5 55
19 Time of maximum of [CH3] profile 4 15
20 Time of maximum of [H2O] profile 2 20
21 Time of reaching 0.05the maximum of p(t) 6 42
22 Time of reaching 0.25the maximum value in [OH] profile 4 40
23 Time of reaching 0.50the maximum value in [OH] profile 6 48
24 Time of reaching 0.75the maximum value in [OH] profile 4 40
25 Time of reaching 0.05the maximum value in [OHEX] profile 13 141
26 Time of reaching 0.10the maximum value in [OHEX] profile 6 27
27 Time of reaching 0.50the maximum value in [OHEX] profile 16 84
28 Time of reaching 0.05the maximum value in [CHEX] profile 6 42
29 Time of reaching 0.25the maximum value in [CO] profile ** 4 40
30 Time of reaching 0.50the maximum value in [CO] profile ** 4 40
31 Time of reaching 0.75the maximum value in [CO] profile ** 4 40
32 Time of reaching 0.90the maximum value in [CO] profile ** 2 15
33 Time of reaching 0.25the maximum value in [CO2] profile 2 8
34 Time of reaching 0.90the maximum value in [CO2] profile 7 49
35 Time of reaching 0.90the maximum value in [H2O] profile 2 14
36 Time of reaching 0.05the maximum value in [C2] profile * 6 38
37 Time of reaching [CO2] = 1.6E14 molecule/cm3 * 2 35
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** These data points were not used at the comparison of the mechanisms, since only Ar was used as diluent gas in the measurements, thus the effect 

of vibration relaxation during CO production was not considered. According to the conclusion of the study of Mathieu et al. 114, if vibration 

relaxation is not considered, the measurements based on CO concentrations are not reproducible.

1251 IDTs in 141 datasets were determined from excited OH (OHEX) concentration profiles. 

IDTs derived from simulated OH (ground state) and OHEX (excited state) concentration profiles 

may or may not agree with each other, and therefore if the experimental IDT was determined based 

on OHEX profile, then the simulated IDT also has to be based on the OHEX concentration profile. 

However, only four of the thirteen mechanisms (Aramco-II-2016, FFCM-I-2016, Konnov-2017, 

Glarborg-2018) contain OHEX chemistry. The OHEX submechanism of the Aramco-II-2016 

mechanism was selected and it was added to the nine mechanisms that do not contain OHEX 

species. The detailed description is available in Part 3 of the Supplementary Material. It was 

verified that adding the OHEX submechanism to these mechanisms changed the calculation of the 

concentrations of all other species negligibly. If the IDT definition was based on the calculated 

OHEX profile, the original Aramco-II-2016, FFCM-I-2016, Konnov-2017, and Glarborg-2018 

mechanisms were used, whereas the other mechanisms were used together with the OHEX 

submechanism of Aramco-II-2016.

The IDTs in 933 data points (included in 111 datasets) were measured based on excited CH 

(CHEX) concentrations, from which 19 points of 8 datasets used helium as diluent. Similarly to 

the case of OH vs. OHEX, the calculated IDT has to be based on calculated CHEX profile, if the 

experimental IDT was obtained via monitoring the CHEX profile. However, only Aramco-II-2016 

and FFCM-I-2016 contain CHEX submechanisms. In a similar way, the CHEX submechanism of 

Aramco-II-2016 was selected and it was added to the mechanisms without CHEX chemistry. 

Again, this addition negligibly affected the calculated concentrations of the other species. In the 

IDT simulations based on CHEX, the original CHEX submechanisms were used with Aramco-II-

2016 and FFCM-I-2016, but CHEX submechanism of Aramco-II-2016 was added to all other 
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mechanisms. We also added the CHEX submechanism of FFCM-I-2016 (instead of Aramco-II-

2016) to all other mechanisms and found that the calculated IDTs were practically identical to 

using the Aramco-II-2016 CHEX submechanism. 

We investigated the detailed description of experimental conditions in all articles containing ST 

experimental data. From all 71 articles without published pressure rise rates, 19 articles 

35,36,42,45,51,52,58,61,66,71,74,75,77,78,80,84,89,98,99 declared that the slightly increasing pressure observed 

before ignition can be neglected. These articles provided several reasons for it, such as (i) the used 

ST equipment had large diameter that minimized the boundary layer effects, (ii) the measured 

pressure rise rates before ignition were too small to be considered, (iii) the measured IDTs were 

very short, (iv) the pressure rise due to reactions could be reproduced by simulations, and (v) no 

pressure rise was found during the whole reacting process due to the high diluent ratio. Three 

articles 54,68,88 took into account the pressure rise at the estimation of the experimental error. The 

rest of the papers did not comment on the observed slight pressure change before ignition or they 

did not find pressure rise. For all shock tube measurements without published pressure rise rate 

the assumption of constant volume and adiabatic conditions was used.

Olm et al. simulated IDTs of hydrogen and syngas mixtures 1,2 and they excluded data points 

without detailed pressure–time history if the initial temperature was lower than 1000 K. In the 

present study, this procedure was not used for the following reasons. The performance of the 

mechanisms at low initial temperatures (T5  900 K) using ST measurements was investigated and 

six mechanisms (Aramco-II-2016, USC-II-2007, Glarborg-2018, Caltech-2015, Konnov-2017, 

GDF-Kin-2009) were found to have good performance (see Fig. S3). The error values belonging 

to the other seven mechanisms (FFCM-I-2016, GRI3.0-1999, Konnov-2009, CRECK-2014, 

Leeds-2001, SanDeigo-2014, and SanDiego-2016) were only slightly higher. Similarly, all data 
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points were sorted to five sets according to the length of IDT, and the results in Fig. S4 show that 

no clear trend of error function values E appear with increasing length of IDTs. The detailed 

description and figures are available in Part 4 of the Supplementary Material. 

In the shock tube measurements of Donohoe et al.43, Zhang et al.55,101, Burke et al.63, Zeng et 

al.90, Merhubi et al.93, and Deng et al.95,96, pressure rise rates during ignition were reported. The 

details of measurements including pressure rise rates was shown in “ST with PRR” part in Table 

2. For the simulation of these ST data, we used the assumptions of constant volume and adiabatic 

system with the measured pressure rise rate.

5.2 RCM simulations

In RCM experiments the compression is never truly adiabatic as from the beginning of the 

compression stroke heat loss takes place to the walls. The most practical way to take such heat loss 

into account in homogeneous simulations is based on the adiabatic core approximation 115,116, 

which assumes an inner adiabatic core in the chamber by mimicking heat loss with an equivalent 

adiabatic expansion work. In order to experimentally determine heat loss rate before ignition, an 

extra, non-reactive experimental measurement is done in an almost identical setup, in which 

oxygen (O2) is replaced with nitrogen (N2), thus no chemical heat production can take place. From 

the corresponding, non-reactive pressure trace the effective volume profile ( ), which also 𝑉eff(𝑡)

takes heat loss into account within the adiabatic core and frozen-chemistry approximation (i.e. 

isentropic process), is obtained by the following integral:

𝑉eff(𝑡) = 𝑉(𝑡0)exp ( ―
𝑝(𝑡)

∫
𝑝(𝑡0)

1
𝛾(𝑇(𝑝 ′ ))

d𝑝′
𝑝′ )
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Here,  and  are the initial pressure and volume, respectively, and  is the adiabatic 𝑝(𝑡0) 𝑉(𝑡0) 𝛾

index:

𝛾(𝑇) =
𝐶𝑝(𝑇)
𝐶𝑉(𝑇) =

𝐶𝑝(𝑇)
𝐶𝑝(𝑇) ― 𝑅  ,

which can be calculated using the NASA polynomials of the constant-pressure molar heat capacity 

( ), The momentary temperature ( ) can be calculated from the initial temperature ( ), the 𝐶𝑝 𝑇(𝑡′) 𝑇0

initial and instantaneous pressures (  , ) and the effective volumes ( , ) using 𝑝(𝑡0) 𝑝(𝑡′) 𝑉(𝑡0) 𝑉eff(𝑡′)

the ideal gas law ( constant). Applying this equation for the whole period, the simulation 𝑝𝑉/𝑇 =

of the non-reactive mixture with the obtained volume profile under adiabatic conditions will 

always precisely follow the measured non-reactive pressure trace if frozen-chemistry 

approximation holds. This procedure was first applied in the work of Kérmonès et al. 117, but it 

was not discussed in details there. Kérmonès et al. 117 used the code of T. Nagy and this code is 

available on request. The procedure proposed by He et al. 118 is very similar, but it determines the 

effective volume profile for the compression period using the reactive pressure trace. If chemistry 

(e.g. pyrolysis) takes place already during compression, these methods can provide more realistic 

simulation results than the procedure proposed by Mittal and Sung 116, in which the matching of 

the pressure profile during compression is not achieved precisely. Transferring the determined 

volume profiles ( ) to reactive simulations, heat loss can be taken into account before 𝑉eff(𝑡)

ignition, which is necessary to capture the experimentally measured IDT.

For the uniform simulation of all considered RCM experiments, we derived effective volume 

histories from the non-reactive pressure histories whenever they were available. For the simulation 

of experiments in papers 43,63,104,107, we used the provided volumetime profiles as no pressure 

histories were published. In refs. 43,63,104, the volume–time profiles were determined based on the 

method of Mittal and Sung 116, whereas in paper 107 they were calculated using the method of He 
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et al. 118. The authors of articles 105 and 106 published only reactive pressure histories and assessed 

heat loss based on them. For these experiments we proceeded in the same way as they did: they 

truncated each pressure history from when substantial heat release started taking place, 

extrapolated the preceding heat loss part to the removed period, and then derived the volumetime 

profile based on the discussed isentropic relations. 

Adiabatic simulations of reactive experiments were carried out using the volume–time profiles 

and all RCM IDTs were defined, in accordance with the experimental papers, as the time of the 

steepest pressure rise (i.e. time of  maximum) after the end of the compression stroke (d𝑝/d𝑡 𝑡 = 0

).

The experimental data used in the present study were obtained from published articles or 

personal communications with the authors. Some RCM experimental data were not accompanied 

with published pressure–time or volume–time histories 94,119,120 and these were excluded from the 

comparison.
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6 Results and discussion

6.1 Ignition delay times

Table 4 lists the mean squared error and the mean signed deviation function values of all 

mechanisms. These data are visualized in Figs. 2 and 3. Fig. 2 shows the average error function 

values of all mechanisms for simulating the shock tube measurements with constant volume 

assumption (ST group), shock tube experiments with pressure rise rate (ST-PRR group), rapid 

compression machine measurements (RCM group) and the overall results (Overall group). There 

are six mechanisms with average error E lower than three times of the estimated experimental error 

(E<9); these are Aramco-II-2016, Caltech-2015, Glarborg-2018, SanDiego-2014, SanDiego-2016, 

and GDF-Kin-2012, in the order of increasing error. For the ST group, the simulation error values 

of Caltech-2015, Glarborg-2018, Aramco-II-2016, and SanDeigo-2014 are the lowest. In the ST-

PRR group, Caltech-2015 and FFCM-I-2016 have obviously lower error values, while for the 

RCM measurements, Aramco-II-2016 has significantly the best performance among all 

mechanisms. All mechanisms reproduce the ST-PRR experiments better than the ST experiments. 

This indicates that providing the pressure rise rate might be important in several cases for the 

accurate reproduction of the experimental conditions. Two mechanisms, GRI3.0-1999 and FFCM-

I-2016 do not reproduce well the RCM experimental results, compared to other investigated 

mechanisms.
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Table 4. The mean squared error function values E and the mean signed deviation function values 

D for all the mechanisms. The shaded cells indicate those up to six best performing mechanisms 

in each experimental type that reproduce the measured ignition delay times on average within 3 

(i.e. E<9).

No. Mechanisms ID Mean squared error function values Mean signed deviation function values

ST ST-PRR RCM Overall ST ST-PRR RCM Overall

1 GRI30-1999 8.931 3.345 560.417 58.415 -0.620 -0.925 15.900 0.839

2 Leeds-2001 11.618 3.763 20.616 10.897 -1.110 -0.752 -1.860 -1.110

3 USC-II-2007 9.418 2.652 54.025 12.178 0.442 -0.236 5.110 0.737

4 Konnov-2009 16.861 16.411 92.951 23.751 -2.850 -3.480 -7.670 -3.420

5 GDF-Kin-2012 7.558 5.740 22.646 8.584 -1.330 -1.490 -2.060 -1.430

6 SanDiego-2014 5.742 2.932 24.848 6.941 0.128 -0.016 -2.740 -0.164

7 CRECK-2014 23.147 9.586 127.636 30.061 -2.900 -0.977 4.880 -1.810

8 Caltech-2015 4.644 1.851 19.099 5.420 0.044 0.285 2.500 0.317

9 Aramco-II-2016 5.458 4.205 6.029 5.264 0.823 1.280 0.589 0.891

10 SanDiego-2016 5.924 3.214 25.517 7.188 0.324 0.193 -2.770 0.015

11 FFCM-I-2016 9.160 2.016 600.867 62.026 0.366 -0.176 18.000 1.880

12 Konnov-2017 8.056 7.445 23.103 9.316 1.410 1.020 3.680 1.540

13 Glarborg-2018 5.258 3.786 12.613 5.643 1.070 1.180 1.800 1.160
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Figure 2. Errors of the reproductions of IDTs according to the different types of experiments. The 

number given in the parentheses are the number of data points used and the average of the 

estimated  of the ln  values.
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Figure. 3. Mean signed deviation values for all mechanisms according to the different types of 

experiments. 

Fig. 3 displays the mean signed deviations for all mechanisms for the different types of 

experiments. Four mechanisms (Caltech-2015, Aramco-II-2016, Konnov-2017 and Glarborg-

2018) generally overpredict the IDTs, which means that the simulated IDTs are longer than the 

experimental ones. Three mechanisms (Leeds-2001, Konnov-2009, and GDF-Kin-2012) 
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underpredict IDTs. The other mechanisms do not show an obvious trend in the signed deviation 

values. 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13
1.00 0.83 0.96 0.87 0.85 0.84 0.57 0.96 0.84 0.83 0.94 0.92 0.91 #1 1.00 0.88 0.91 0.81 0.82 0.79 0.49 0.90 0.89 0.77 0.93 0.84 0.90 #1

1.00 0.76 0.77 0.74 0.84 0.68 0.82 0.82 0.83 0.83 0.89 0.89 #2 1.00 0.73 0.77 0.69 0.79 0.53 0.80 0.88 0.75 0.85 0.82 0.94 #2
1.00 0.88 0.85 0.82 0.47 0.93 0.79 0.82 0.93 0.89 0.86 #3 1.00 0.82 0.85 0.75 0.42 0.90 0.81 0.73 0.90 0.80 0.80 #3

1.00 0.79 0.91 0.39 0.83 0.71 0.91 0.84 0.81 0.87 #4 1.00 0.70 0.87 0.17 0.74 0.67 0.87 0.75 0.72 0.79 #4
1.00 0.73 0.60 0.87 0.86 0.73 0.84 0.79 0.81 #5 1.00 0.52 0.61 0.91 0.84 0.50 0.88 0.91 0.73 #5

1.00 0.45 0.82 0.74 1.00 0.81 0.85 0.90 #6 1.00 0.14 0.66 0.63 1.00 0.71 0.59 0.83 #6
1.00 0.59 0.72 0.42 0.55 0.61 0.58 #7 1.00 0.65 0.71 0.10 0.61 0.63 0.51 #7

1.00 0.88 0.80 0.95 0.93 0.91 #8 1.00 0.94 0.63 0.96 0.91 0.87 #8
1.00 0.72 0.83 0.88 0.87 #9 1.00 0.59 0.93 0.91 0.89 #9

1.00 0.80 0.83 0.89 #10 1.00 0.68 0.56 0.81 #10
1.00 0.93 0.89 #11 1.00 0.90 0.92 #11

1.00 0.92 #12 1.00 0.83 #12
1.00 #13 1.00 #13

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13
1.00 0.25 0.49 0.34 0.33 0.49 0.60 0.40 0.11 0.49 0.79 0.36 0.40 #1 1.00 0.79 0.90 0.81 0.79 0.80 0.56 0.89 0.78 0.79 0.92 0.85 0.86 #1

1.00 0.75 0.76 0.69 0.78 0.47 0.74 0.68 0.78 0.49 0.60 0.80 #2 1.00 0.75 0.77 0.72 0.82 0.63 0.81 0.82 0.81 0.80 0.85 0.89 #2
1.00 0.64 0.71 0.83 0.63 0.74 0.59 0.83 0.57 0.76 0.83 #3 1.00 0.84 0.84 0.81 0.47 0.91 0.78 0.80 0.89 0.86 0.85 #3

1.00 0.68 0.78 0.47 0.60 0.56 0.78 0.48 0.43 0.65 #4 1.00 0.77 0.89 0.35 0.79 0.69 0.89 0.79 0.76 0.83 #4
1.00 0.87 0.54 0.69 0.55 0.87 0.39 0.50 0.72 #5 1.00 0.70 0.60 0.86 0.83 0.69 0.81 0.78 0.79 #5

1.00 0.65 0.75 0.57 0.99 0.50 0.59 0.82 #6 1.00 0.40 0.78 0.70 1.00 0.76 0.77 0.88 #6
1.00 0.64 0.29 0.66 0.51 0.40 0.62 #7 1.00 0.61 0.68 0.38 0.56 0.59 0.57 #7

1.00 0.69 0.75 0.50 0.63 0.91 #8 1.00 0.88 0.76 0.91 0.90 0.90 #8
1.00 0.56 0.38 0.64 0.73 #9 1.00 0.68 0.81 0.86 0.86 #9

1.00 0.50 0.60 0.81 #10 1.00 0.74 0.76 0.87 #10
1.00 0.53 0.54 #11 1.00 0.89 0.86 #11

1.00 0.75 #12 1.00 0.88 #12
1.00 #13 1.00 #13

i. Shock Tube
simulations
(3557 data points)

ii. Shock Tube
simulations with PRR
(846 data points)

iv. Overall
ignition delay times
simulations
(4985 data points)

iii. RCM
simulations
(582 data points)

Figure. 4. Matrix of Pearson correlation coefficients for all types of simulations. The #n numbers 

refer to the mechanism indices shown in Table 1.

In Fig. 4, the average Pearson correlation coefficients between the IDTs calculated by each two 

mechanisms are displayed. Among the weak correlations, CRECK-2014 (#7) has small correlation 

coefficients with all other 12 mechanisms in all the four groups, and GRI3.0-1999 (#1) has this 

feature only for the RCM measurements. In Fig. 4 panel iii (RCM experiments), FFCM-I-2016 

(#11) and Konnov-2017 (#12) have weak correlations with the other mechanisms overall. 

SanDiego-2014 (#6) and SanDiego-2016 (#10) have the highest correlation at all types of 

measurements, since the latter was developed from the former one, and their simulated values for 

most of the data points are very close. Except for the two San Diego mechanisms, the highest 
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correlations exist for mechanism pairs GRI3.0-1999 (#1) / USC-II-2007 (#3) and GRI3.0-1999 

(#1) / Caltech-2015 (#8) in the ST subset, Caltech-2015 (#8) / FFCM-I-2016 (#11) in the ST-PRR 

subset, Caltech-2015 (#8) / Glarborg-2018 (#13) in the RCM subset, and GRI3.0-1999 (#1) / 

FFCM-I-2016 (#11) for all IDTs. In ST and ST-PRR parts, any of the pairs between GRI3.0-1999 

(#1), USC-II-2007 (#3), Caltech-2015 (#8), FFCM-I-2016 (#11) has a correlation coefficient 

higher than or equal to 0.9. In addition, simulation results of Caltech-2015 (#8) and Glarborg-2018 

(#13) have correlation higher than average with several mechanisms in the four panels. The 

correlation coefficients of each two mechanisms are larger for ST experiments than for the ST-

PRR and RCM ones. The correlation coefficients indicate that most mechanisms were calibrated 

considering the ST without PRR datasets, while the generally more recent ST-PRR and RCM 

datasets were less used. High correlation coefficients are usually in good accordance with the 

known development history of the mechanisms. Olm et al. had a similar observation for the 

hydrogen 1 and syngas 2 mechanisms.
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Figure. 5. Performance of the mechanisms in the various intervals of temperature with respect to 

IDT. The panels show the results for STs without PRR (a), STs with PRR (b) and RCM (c). The 

orange and green numbers at the top of the figure give the number of data points in each interval 

before and after excluding data points. Data points that could not be reproduced within 3σ error 

by any of the mechanisms were not used. 

In Figs. 5 to 10, the performance of the mechanisms in reproducing IDTs is shown in the various 

intervals of experimental conditions, like temperature, pressure, equivalence ratio, and diluent ratio. 

In these figures, the intervals were selected by ensuring statistically enough data points within each 

interval. The number of data points used in each range is shown at the top of the corresponding 

intervals.
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Fig. 5 shows the dependence of E values of the mechanisms on the initial temperature. In Fig. 

5(a) for ST measurements without PRR, the overall trend is that most mechanisms can reproduce 

the experiments with better accuracy in the middle temperature range, (1200K  2200K) except 

for mechanisms Leeds-2001, Konnov-2009, and CRECK-2014. The E values of these three 

mechanisms follow a similar trend, but with higher values. In this middle temperature range, 

Caltech-2015 and FFCM-I-2017 have the lowest error values. However, the E values of FFCM-I-

2017 increase dramatically towards lower and higher temperatures, while Caltech-2015 has stable 

performance in the whole temperature range. Similarly, Aramco-II-2016 and Glarborg-2018 are 

accurate at all initial temperatures. 

As Fig. 5(b) shows, for the reproduction of the ST with PRR experimental data, five mechanisms 

(Leeds-2001, Konnov-2009, GDF-Kin-2012, CRECK-2014, and Konnov-2017) have large errors 

in all or in some temperature ranges. Surprisingly, Aramco-II-2016 has a somewhat larger error in 

the temperature range of 1300K to 1700K, where most other mechanisms have very low error. 

According to Fig. 5(c), the majority of mechanisms reproduce the RCM experimental data 

poorly, while Aramco-II-2016 is the only one which has E values lower than 9 (i.e. below on 

average 3 deviation) at all initial temperatures. Konnov-2017 and Glarborg-2018 have error 

values larger than those of Aramco-II-2016, but these are better than the other mechanisms. The 

error value E of Caltech-2015 is less than 9 above 980K, while below this temperature E is 

increasing significantly with decreasing temperature.

Fig. S5 (panels (a) and (b) for initial temperature and pressure, respectively) in the 

Supplementary Material shows that there is no trend for under- or overprediction of the ST 

experimental data (with or without PRR) for most of the mechanisms. At high temperature, 

CRECK-2014 and Leeds-2001 strongly underpredicts the ignition delay times. At low temperature, 
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Konnov-2009 underpredicts the IDTs. Konnov-2017 overpredicts IDTs in the whole pressure 

range, while CRECK-2014 and Konnov-2009 underpredicts the ignition delay times at low and 

high pressures, respectively. For the RCM experimental data (see Fig. S5 (c)) all mechanisms, 

except for Konnov-2009, trend to predict relatively longer IDTs at lower initial temperatures, while 

simulate relatively shorter IDTs at higher temperatures. 

Figure. 6. Performance of the mechanisms for various intervals of pressure with respect to IDT. 

Each plot shows the results for STs without PRR (a), STs with PRR (b) and RCM (c).

Although Table 1 and Fig. 1 show that the mechanisms have not been validated considering the 

low pressure (< 1 atm) experiments, Fig. 6(a) shows that all mechanisms can reproduce the ST 

experiments without PRR data well in the low and middle pressure range, but their performance 
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is not as good at pressures higher than 30 atm, except for Glarborg-2018, Aramco-II-2016 and 

Clatech-2015. As shown in Fig. 6(b) for the ST-PRR data, Konnov-2009, GDF-Kin-2012, and 

CRECK-2014 have significant change of E values for all ranges of pressure, while the other 

mechanisms are satisfactory for reproducing all datasets. In Fig. 6(c), Aramco-II-2016 is the most 

accurate mechanism for the reproduction of the RCM data in all pressure ranges and the deviations 

of Caltech-2015 and Glarborg-2018 are also within the reasonable range. However, the predicting 

capability of all other mechanisms are much poorer.

Figure 7 shows the log   1000/T plots and indicates the deviations of the various simulation 

results compared to the experimental IDT uncertainty. Note that neither the experimental data nor 

the simulation results fit to a straight line, because pressure was not identical in these experiments.

Figure. 7. Measured and simulated ignition delay times of methane mixtures at high pressures. 

The detailed information on experimental data x10004330 and x10004331 71 is shown in Table A 

in the Supplementary Material.
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Figure. 8. Performance of the mechanisms for various intervals of equivalence ratio with respect 

to IDT. Each plot shows the results for STs without PRR (a), STs with PRR (b) and RCM (c).

Fig. 8(a) shows that at the reproduction of ST data without PRR there is no clear trend for 

changing the error function values with equivalence ratios. However, in the low equivalence ratio 

range SanDiego-2014, SanDiego-2016, and Caltech-2015 have the lowest error. Table 1 and Fig. 

1 indicate that all mechanisms but FFCM-I-2016 were validated only at equivalence ratios larger 

than 0.1. In Fig. 8(a) it is shown that all mechanisms can predict the experiments within  at low 2𝜎

equivalence ratio < 0.2, except for Leeds-2001, GDF-Kin-2012, CRECK-2014 and the two 𝜑

Konnov mechanisms. For the reproduction of ST data with PRR (Fig. 8(b)), Caltech-2015 and 

FFCM-I-2016 are the most accurate mechanisms, and Glarborg-2018 has low error (less than )  1𝜎
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at stoichiometric equivalence ratio. For reproducing the RCM data (Fig. 8(c)), most mechanisms 

are less accurate under slightly lean (0.7<<0.9) conditions compared to both the lean and rich 

mixtures. Aramco-II-2016 has the same trend, but its error is the lowest at most equivalence 

intervals.

Figure. 9. Measured and simulated ignition delay times of the methane mixtures with various 

equivalence ratios. The detailed information of the experimental data (x10004036 91, x1000414652, 

x10004409 81, x10004587 100) is shown on the Table A in the Supplementary Material.
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Figure 9(a) provides a related comparison of the experimental data and the simulation results 

on a log   1000K/T plot. Near the stoichiometric equivalence ratio, the errors of most 

mechanisms are low, except for CRECK-2014 and Konnov-2009, as seen in Fig 9(b). In the range 

of moderately rich equivalence ratio (1.2<<2.0), the GDF-Kin-2012 mechanism has relatively 

lower error compared to other mechanisms, as shown in Fig 9(c). For mixtures even richer in fuel 

(2.0≤), Glarborg-2018 could reproduce the experimental data the best, as shown in Fig 9(d). 

Figure. 10. Performance of the mechanisms for various intervals of diluent ratio with respect to 

IDT. Each plot shows the results for STs without PRR (a), STs with PRR (b) and RCM (c).
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The lowest diluent ratio used for the original validation of mechanisms is 33.3% (see Table 1), 

which means that the performance of these mechanisms below diluent ratio 33.3% was not 

investigated. In the present study, however, even combustion of undiluted mixtures was also 

considered (diluent ratio 0, oxy-fuel combustion). Figure 10 shows the performance of the 

mechanisms for various intervals of diluent ratio. For the ST data without PRR (Fig. 10(a)), 

Glarborg-2018 and Caltech-2015 are advantageous in predicting experiments in the full condition 

range. Caltech-2015 and FFCM-I-2016 are the most accurate mechanisms for reproducing the ST 

experimental data with PRR, as shown in Fig. 10(b). Fig. 10, panels (a), (b), and (c) show that 

Leeds-2001, Caltech-2015 and Aramco-II-2016 are the best performing mechanisms, respectively, 

under low diluent ratio conditions.

For the prediction of RCM data (Fig. 10(c)), Aramco-II-2016 is the best mechanism again, 

although its error is slightly higher in the diluent ratio range 72% to 74%. As shown in Fig. S6 (f) 

of the Supplementary Material, Aramco-II-2016 overpredicts the IDTs measured with RCM in 

most ranges of diluent ratio.
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6.2 Sensitivity analysis results

Sensitivity analysis was carried out using the four mechanisms with the best predicting ability 

(SanDiego-2014, Clatech-2015, Aramco-II-2016 and Glarborg-2018) under each of the conditions 

of the collected IDT measurements. The local sensitivity coefficients were calculated in such a 

way that Arrhenius parameters A of the reactions were increased by 5% and the ignition delay 

times were recalculated. Sensitivity coefficients d  / d Aj were calculated by finite differences and 

then converted to normalized sensitivities d ln  / d ln Aj = (Aj/) d  / d Aj. The normalized 

sensitivity coefficients were scaled to values between 1 and +1 by dividing them by the largest 

absolute sensitivity coefficients. The most sensitive reactions were identified based on the order 

of the average of the absolute values of the scaled sensitivity coefficient obtained in the 

investigated intervals. Furthermore, range [1, +1] was divided to ten equidistant intervals, and 

the relative frequency of the reactions in each interval was counted. This analysis was carried out 

for each experimental type (ST, ST with PRR, RCM).

In Table 5, for the selected four mechanisms the fifteen most sensitive reactions and their mean 

absolute scaled sensitivity coefficients  are shown. The order of the sensitivity is meaningful  𝑆𝑎𝑏𝑠

within one mechanism, and the values belonging to different mechanisms cannot be compared. 
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Table 5. The top 15 most sensitive reactions for the selected four mechanisms based on the average absolute values  (scale: 0 - 1)𝑆𝑎𝑏𝑠

Subset 1: Shock tube ignition delay times with constant pressure

Rank SanDiego-2014 𝑆𝑎𝑏𝑠 Caltech-2015 𝑆𝑎𝑏𝑠 Aramco-II-2016 𝑆𝑎𝑏𝑠 Glarborg-2018 𝑆𝑎𝑏𝑠

1 H + O2 = O + OH 0.738 H + O2 = O + OH 0.678 H + O2 = O + OH 0.836 H + O2 = O + OH 0.855

2 CH3 + O2 = CH2O + OH 0.650 CH3 + O2 = CH2O + OH 0.362 CH3 + O2 = CH2O + OH 0.506 CH3 + O2 = CH2O + OH 0.413

3 CH3 + O2 = CH3O + O 0.467 CH4 + H = CH3 + H2 0.356 CH4 + H = CH3 + H2 0.441 CH4 + H = CH3 + H2 0.410

4 CH4 + H = CH3 + H2 0.412 CH3 + CH3 = C2H5 + H 0.279 CH3 + HO2 = CH3O + OH 0.344 CH3 + HO2 = CH3O + OH 0.389

5 CH3 + H + M = CH4 + M LP 0.361 CH3 + HO2 = CH3O + OH 0.253 CH3 + O2 = CH3O + O 0.299 CH3 + CH3 = C2H5 + H 0.282

6 CH3 + CH3 = C2H5 + H 0.213 CH3 + O2 = CH3O + O 0.205 CH3 + CH3 + M = C2H6 + M 0.254 CH3 + O2 = CH3O + O 0.279

7 CH3 + CH3 + M = C2H6 + M 0.193 C2H6 + M = CH3 + CH3 + M 0.203 CH3 + H + M = CH4 + M LP 0.226 CH4 + O2 = CH3 + HO2 0.192

8 CH4 + OH = CH3 + H2O 0.173 CH3 + H + M = CH4 + M LP 0.163 CH4 + OH = CH3 + H2O 0.179 CH3 + CH3 + M = C2H6 + M 0.184

9 CH2O + O2 = HCO + HO2 0.152 CH3 + HO2 = CH4 + O2 0.151 CH2O + O2 = HCO + HO2 0.178 CH3 + H + M = CH4 + M LP 0.182

10 CH3 + CH3 + M = C2H6 + M LP 0.127 CH3 + H2O2 = CH4 + HO2 0.124 CH4 + HO2 = CH3 + H2O2 0.171 CH3 + CH3 + M = C2H6 + M LP 0.129

11 CH2O + OH = HCO + H2O 0.111 CH2O + O2 = HCO + HO2 0.114 CH3 + HO2 = CH4 + O2 0.161 HCO + O2 = CO + HO2 0.120

12 CH3 + HO2 = CH3O + OH 0.111 C2H6 + M = CH3 + CH3 + M LP 0.105 HCO + M = H + CO + M 0.107 CH4 + OH = CH3 + H2O 0.116

13 CH3 + O = CH2O + H 0.105 CH4 + OH = CH3 + H2O 0.101 CH3 + O = CH2O + H 0.093 HCO + M = H + CO + M LP 0.102

14 HCO + M = CO + H + M 0.092 HCO + M = CO + H + M 0.098 HCO + O2 = CO + HO2 0.092 CH4 + HO2 = CH3 + H2O2 0.101

15 CH2O + HO2 = HCO + H2O2 0.089 HCO + O2 = CO + HO2 0.083 CH4 + O = CH3 + OH 0.085 CH3 + O = CH2O + H 0.095

Subset 2: Shock tube ignition delay times with pressure rise rate

Rank SanDiego-2014 𝑆𝑎𝑏𝑠 Caltech-2015 𝑆𝑎𝑏𝑠 Aramco-II-2016 𝑆𝑎𝑏𝑠 Glarborg-2018 𝑆𝑎𝑏𝑠

1 H + O2 = O + OH 0.858 H + O2 = O + OH 0.964 H+ O2 = O + OH 0.963 H + O2 = O + OH 0.903

2 CH3 + O2 = CH2O + OH 0.652 CH3 + O2 = CH2O + OH 0.438 CH3 + O2 = CH2O + OH 0.509 CH3 + O2 = CH2O + OH 0.394

3 CH3 + O2 = CH3O + O 0.416 CH4 + H = CH3 + H2 0.413 CH4 + H = CH3 + H2 0.388 CH3 + HO2 = CH3O + OH 0.374

4 CH4 + H = H2 + CH3 0.378 CH3 + HO2 = CH3O + OH 0.297 CH3 + HO2 = CH3O + OH 0.335 CH4 + H = CH3 + H2 0.337

5 CH3 + H + M = CH4 + M LP 0.216 CH3 + CH3 = C2H5 + H 0.280 CH3 + O2 = CH3O + O 0.262 CH3 + O2 = CH3O + O 0.213

6 CH4 + OH = H2O + CH3 0.213 C2H6 + M = CH3 + CH3 + M 0.214 CH3 + CH3 + M = C2H6 + M 0.236 CH3 + CH3 = C2H5 + H 0.188

7 CH3 + CH3 + M = C2H6 + M 0.196 CH3 + O2 = CH3O + O 0.208 CH4 + OH = CH3 + H2O 0.207 CH3 + CH3 + M = C2H6 + M 0.170

8 CH3 + CH3 = C2H5 + H 0.163 CH4 + OH = CH3 + H2O 0.184 CH2O + O2 = HCO + HO2 0.160 CH4 + OH = CH3 + H2O 0.159

9 CH3 + CH3 + M = C2H6 + M LP 0.150 OH + H2 = H + H2O 0.147 H2 + OH = H + H2O 0.124 CH4 + O2 = CH3 + HO2 0.136
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10 CH2O + O2 = HCO + HO2 0.137 CH3 + HO2 = CH4 + O2 0.143 CH3 + HO2 = CH4 + O2 0.104 CH3 + CH3 + M = C2H6 + M LP 0.129

11 CH3 + HO2 = CH3O + OH 0.123 C2H6 + M = CH3 + CH3 + M LP 0.138 CH3 + H + M = CH4 + M LP 0.104 OH + H2 = H + H2O 0.128

12 H2 + OH = H2O + H 0.111 CH2O + O2 = HCO + HO2 0.113 CH4 + HO2 = CH3 + H2O2 0.101 H + O2 + M = HO2 + M LP 0.112

13 H + O2 + M = HO2 + M LP 0.104 CH3 + H2O2 = CH4 + HO2 0.100 H + O2 + M = HO2 + M LP 0.097 CH3 + H + M = CH4 + M LP 0.081

14 CH2O + OH = HCO + H2O 0.096 CH3 + H + M = CH4 + M LP 0.095 HCO + M = H + CO + M 0.073 HCO + O2 = CO + HO2 0.078

15 CH3 + O = CH2O + H 0.088 H + O2 + M = HO2 + M LP 0.092 CH2O + H = HCO + H2 0.065 HCO + M = H + CO + M LP 0.076

Subset 3: RCM measurements

Rank SanDiego-2014 𝑆𝑎𝑏𝑠 Caltech-2015 𝑆𝑎𝑏𝑠 Aramco-II-2016 𝑆𝑎𝑏𝑠 Glarborg-2018 𝑆𝑎𝑏𝑠

1 CH3 + O2 = CH2O + OH 0.720 OH + OH + M = H2O2 + M LP 0.623 CH4 + O = CH3 + OH 0.761 CH3 + H = CH2 + H2 0.733

2 OH + OH + M = H2O2 + M LP 0.398 CH3 + H2O2 = CH4 + HO2 0.619 C2H5OH + CH3O2 = C2H5O + CH3O2H 0.699 CH2CHO + CH2 = C2H4 + HCO 0.682

3 CH2O + HO2 = HCO + H2O2 0.398 C2H6 + M = CH3 + CH3 + M 0.467 CH4 + OH = CH3 + H2O 0.579 HCO + O2 = CO + HO2 0.653

4 CH4 + HO2 = CH3 + H2O2 0.362 CH2O + HO2 = HCO + H2O2 0.356 CH4 + HO2 = CH3 + H2O2 0.554 HCO + HO2 = CO2 + OH + H 0.644

5 CH3 + CH3 + M = C2H6 + M 0.344 CH3 + O2 = CH2O + OH 0.343 HOCHO + H => H2 + CO + OH 0.469 CH2O + H = HCO + H2
 DUP2 0.554

6 CH2O + O2 = HCO + HO2 0.208 CH3O2 + CH3 = CH3O + CH3O 0.341 HCOH + OH = HCO + H2O 0.464 CH3OOH + H = CH2OOH + H2 0.474

7 OH + OH + M = H2O2 + M 0.192 HO2 + HO2 = H2O2 + O2
 DUP2 0.340 CH3 + O = CH2O + H 0.452 HCO + OH = CO + H2O 0.457

8 CH4 + OH = H2O + CH3 0.184 H + O2 = O + OH 0.320 H + O2 = O + OH 0.349 CH3 + M = CH + H2 + M 0.398

9 HO2 + HO2 = H2O2 + O2
 DUP2 0.164 CH3 + HO2 = CH3O + OH 0.301 CH2O + H = HCO + H2 0.346 CH3O + CH3 = CH2O + CH4 0.391

10 CH2O + OH = HCO + H2O 0.148 OH + OH + M = H2O2 + M 0.254 CH3 + OH = CH2 + H2O 0.315 H + O2 = O + OH 0.372

11 H + O2 = OH + O 0.132 H + O2 + M = HO2 + M LP 0.232 H2O2 + M = OH + OH + M 0.280 CH3OO + CH2O = CH3OOH + HCO 0.351

12 HO2 + HO2 = H2O2 + O2
 DUP1 0.123 CH3O2 + CH2O => CH3O + OH + 

HCO 0.216 HO2 + HO2 = H2O2 + O2
 DUP2 0.275 H2O2 + M = OH + OH + M 0.303

13 H + O2 + M = HO2 + M LP 0.104 CH3 + HO2 = CH4 + O2 0.193 C2H5OH + C2H5 = P-C2H4OH + C2H6 0.255 HO2 + HO2 = H2O2 + O2
 DUP1 0.294

14 CH3 + O2 = CH3O + O 0.104 CH2O + O2 = HCO + HO2 0.160 CH3 + O2 + M = CH3O2 + M 0.246 CH2CHO + O2 = CH2O + CO + OH 0.274

15 CH3 + HO2 = CH3O + OH 0.093 HO2 + HO2 = H2O2 + O2
 DUP1 0.151 CH4 + H = CH3 + H2 0.242 HCCO + HCCO = C2H2 + CO + CO 0.213

LP Low-pressure limit rate parameters.
DUP1-2 Duplicate reaction; the numbering is in the order of the reactions in the mechanism.

Red shading: six reactions with the highest average absolute scaled sensitivity coefficients.

Yellow shading: six reactions with the next highest average absolute scaled sensitivity coefficients.
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Six reactions, R1: H + O2 = O + OH, R2: CH3 + O2 = CH2O + OH, R3: CH4 + H = CH3 + H2, 

R4: CH3 + O2 = CH3O + O, R5: HO2 + HO2 = H2O2 + O2 (Duplicate 1), R6: HO2 + HO2 = H2O2 

+ O2 (Duplicate 2), are the most sensitive elementary reactions. This list indicates that both 

channels of reaction HO2 + HO2 = H2O2 + O2 are important. The following analysis investigates 

the sum of the rate coefficients of channels R5 and R6. These six reactions are highlighted by red 

in Table 5. The first four reaction steps, R1 to R4, were defined as the most sensitive elementary 

reactions since they have the highest average absolute scaled sensitivity coefficients ( ) in (𝑆𝑎𝑏𝑠)𝑎𝑣𝑔

the two shock tube subsets of Table 5. The two channels of the elementary reaction, HO2 + HO2 

= H2O2 + O2, were further identified as the most sensitive reaction steps by the RCM subset of 

Table 5.

Another group of six reactions is listed as second-level sensitive reactions: R7: CH4 + OH = CH3 

+ H2O, R8: CH3 + H + M = CH4 + M (LP), R9: OH + H2 = H + H2O, R10: H + O2 + M = HO2 + 

M (LP), R11: CH4 + O = CH3 + OH, R12: CH4 + HO2 = CH3 + H2O2. These are highlighted by 

yellow in Table 5. The values of R7 and R8 in ST measurements and R7-R10 in ST-PRR (𝑆𝑎𝑏𝑠)𝑎𝑣𝑔

experiments are between 0.1 and 0.25. 

For the most sensitive reactions of the RCM subset, the inconsistency between the four best 

mechanisms is significant, as shown in Table 5. Since Aramco-II-2016 is the only mechanism that 

had a good performance under RCM conditions, the top four sensitive reactions of Aramco-II-

2016 for RCM subset (  > 0.5) are definitely important. However, reaction C2H5OH + CH3O2 𝑆𝑎𝑏𝑠

= C2H5O + CH3O2H is not present in the other mechanisms, therefore the rate coefficient of this 

reaction cannot be used in comparisons. Considering that reaction CH4 + OH = CH3 + H2O has 

been identified as the most important reaction in the two subsets of the shock tube measurements, 
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reactions CH4 + O = CH3 + OH (R11) and CH4 + HO2 = CH3 + H2O2 (R12) are added to the list 

of the second-level sensitive reactions.

Figure. 11. Comparison of the rate coefficients of the five most sensitive reactions: R1: H + O2 = 

O + OH (a), R2: CH3 + O2 = CH2O + OH (b), R3: CH4 + H = CH3 + H2 (c), R4: CH3 + O2 = CH3O 
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+ O (d), R5 + R6: HO2 + HO2 = H2O2 + O2 (e). Panel (b) contains the direct measurement results 

of the R2 rate coefficients from the studies of Srinivasan 121 122 and Saito 123 (only a single point 

with error bar). The units of the rate coefficients are in cm, mol, s.

Figure 11 gives the Arrhenius plots of the five most sensitive reactions as used in the 13 

mechanisms. Rate coefficients of the four best mechanisms are drawn by solid lines for an added 

emphasis. For R1, H + O2 = O + OH (Fig. 11(a)), most mechanisms have similar trends, except 

for CRECK-2014 at middle and high temperatures (>1100K) and Leeds-2001 and Konnov-2009 

at low temperature (<890K). GDF-Kin-2012 has slight deviation from the other mechanisms in 

the whole temperature range. In the case of R2, CH3 + O2 = CH2O + OH (b), the rate coefficients 

used in the various mechanisms are very different. The ln k curves of the four best mechanisms 

have four different trends, although Caltech-2015 and Aramco-II-2016 are close to each other. 

Considering that the Arrhenius parameters of reaction R2 are very different in the various 

mechanisms, we investigated the origin of the Arrhenius parameters of this reaction in each 

mechanism. The findings are given in Table E of the Supplementary Material. Srinivasan et al. 121 

122 and Saito et al. 123 published direct measurement results for the R2 rate coefficient. These 

experimental data are also plotted in the Fig. 11. The available direct measurement data are in the 

high temperature range (above1250 K) and such data are not available at lower temperatures which 

are more critical for the modelling. For reaction R3, CH4 + H = CH3 + H2 (c), the rate coefficients 

for all the mechanisms have a similar trend. The rate coefficients of GDF-Kin-2012 and FFCM-I-

2016 are the highest and lowest ones, respectively. R4, CH3 + O2 = CH3O + O (d), is the second 

channel of the reaction between CH3 and O2 in the present study. Unlike of the first channel, R2, 

the rate coefficients of R4 for all mechanisms have a similar Arrhenius curve. For the four best 

mechanisms, only the rate coefficient of Caltech-2015 deviates significantly at low temperatures 
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(<820K). R5 and R6 are two duplicate channels of reaction HO2 + HO2 = H2O2 + O2. The sum of 

these two rate coefficients is plotted in Fig 11(e). At high temperatures channel R5 dominates the 

rate coefficient. Caltech-2015, USC-II-2007, Konnov-2009, GRI3.0-1999, Leed-2001 have the 

highest R5 rate coefficients and thus the highest overall k of this reaction, while these mechanisms 

have the lowest R6 rate coefficients and thus the lowest overall k at low temperatures. The 

Arrhenius plot of (R5+R6) of Glarborg-2018 is significantly different from all other mechanisms. 

CRECK-2014 uses temperature independent rate coefficient for reaction (R5+R6) HO2 + HO2 = 

H2O2 + O2. 

Similarly, the Arrhenius plots of the second-level sensitive reactions, R7–R12, are displayed in 

Fig. 12. For R7, CH4 + OH = CH3 + H2O, the rate coefficient of Aramco-II-2016 is significantly 

higher than those of other mechanisms at high temperature, while it decreases rapidly with 

decreasing temperature. The Arrhenius plot of reaction R8 CH3 + H + M = CH4 + M (LP) shows 

that mechanisms GRI3.0-1999, USC-II-2007, GDF-Kin-2012, SanDiego-2014, Caltech-2015, 

Aramco-II-2016, SanDiego-2016 have identical rate coefficients, while all the other mechanisms 

use alternative ones. Konnov-2009 used significantly higher rate coefficient for R8 at low 

temperature than the other mechanisms, and in the newer version (Konnov-2017) the rate 

coefficient was shifted to a lower level below 1000 K. R9 is a sensitive reaction for ST-PRR 

measurements and the Arrhenius plots for all mechanisms are similar, except for Aramco-II-2016; 

its rate coefficient is significantly lower than those of other mechanisms. Reaction R10, H + O2 + 

M = HO2 + M (LP), is relatively sensitive in Caltech-2015 at the simulation of RCM measurements, 

and the R10 rate coefficient of Caltech-2015 is among the lowest ones in the whole temperature 

range. For R11, CH4 + O = CH3 + OH, the Arrhenius plots are close to each other, while the rate 

coefficient of Glarborg-2018 is slightly higher at both lower and higher temperatures. At low 
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temperature, the rate coefficients of R12, CH4 + HO2 = CH3 + H2O2, are close to each other for all 

mechanisms, while there are significant differences at high temperatures. 
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Figure. 12. Comparison of the rate coefficients of second-level sensitive reactions: R7: CH4 + OH 

= CH3 + H2O (a), R8: CH3 + H + M = CH4 + M (LP) (b), R9: OH + H2 = H + H2O (c), R10: H + 

O2 + M = HO2 + M (LP) (d), R11: CH4 + O = CH3 + OH (e), R12: CH4 + HO2 = CH3 + H2O2 (f). 

The units of the rate coefficients are expressed in cm, mol, s.

Figure 13 shows the frequencies of the sensitivity coefficients from R1 to R6. The sensitivity 

coefficients have little variation for the shock tube measurements (ST and ST-PRR), while for the 

RCM experiments, the highly sensitive coefficients of identical reactions in different mechanisms 

have significant discrepancy.

It can be seen from Fig. 13(a) that reaction R1 have strong promoting effect for most cases, but 

the promoting effect in SanDiego-2014 on RCM ignition is very weak. Fig. 13(b) shows that 

reaction R2 shortens the simulated RCM ignition delays in SanDiego-2014; R2 basically performs 

the role of R1 in this mechanism via the generation of OH from O2. Correspondingly, Fig. 11(b) 

indicates that the rate coefficient of R2 for SanDiego-2014 is large, and Table 5 shows that R2 has 

the highest average value of the absolute scaled sensitivity coefficients for the SanDiego-2014 

mechanism under RCM conditions. This suggests that the role of reaction R2 at RCM ignition 

(that is at lower temperatures) deserves further investigations. Performances of mechanisms 

Caltech-2015, Aramco-II-2016, Glarborg-2018 are good for reproducing ST-IDT (see Fig. 5(a)), 

and Aramco-II-2016, Glarborg-2018 and Konnov-2017 well reproduce RCM-IDT (see Fig. 5(c)). 

Reaction R2 is the only reaction that exhibits much inconsistency at low temperatures (<1200K) 

among the mechanisms, which indicates that the ln k curves for reaction R2 must be within the 

framed region in Fig. 11(b) in the corresponding temperature region.

Fig. 13(c) shows that increasing the rate coefficient of reaction R3 extends the shock tube 

ignition delays, while under RCM conditions it shortens the ignition delays, especially for Aramco-
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II-2016. Reaction R4 is able to accelerate the shock tube ignition, while for RCM ignitions the 

effect is negligible, as seen from Fig. 13(d). Based on Fig. 13(e) and Fig. 13(f), the two channels 

of the reaction HO2 + HO2 = H2O2 + O2 have inhibiting ability to ignition on various extent for all 

the mechanisms in RCM simulations, while the scaled sensitivity coefficients for shock tube 

ignitions are very low.

Similar results of sensitivity analysis for reactions R7–R12 are shown in Fig. S7 in the 

Supplementary Material. For reactions R8, R9 and R10 in Figs. S7 (b), (c), and (d), respectively, 

it is easy to see that these reactions have slight promoting or depressing influence, in good 

accordance for all mechanisms and reaction types. However, it is interesting that reaction R7 (CH4 

+ OH = CH3 + H2O) has an opposite effect for ignitions in RCM and shock tube. It is worth noting 

that increasing the rate coefficient of R7 (see Fig. S7(a)) and R11 (Fig. S7(e)) can accelerate the 

ignition in the RCM simulations using Aramco-II-2016, while this effect is insignificant in the 

other mechanisms. Moreover, Fig. S7(f) shows that increasing the rate coefficient of R12 (CH4 + 

HO2 = CH3 + H2O2) have opposite effect on the RCM ignition delay times using SanDiego-2014 

and Aramco-II-2016.
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Figure. 13. Frequencies of sensitivity coefficients of R1: H + O2 = O + OH (a), R2: CH3 + O2 = 

CH2O + OH (b), R3: CH4 + H = CH3 + H2 (c), R4: CH3 + O2 = CH3O + O (d), R5: HO2 + HO2 = 

H2O2 + O2 (Duplicate 1) (e), R6: HO2 + HO2 = H2O2 + O2 (Duplicate 2) (f), for the three types of 
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measurements (ST, ST-PRR, RCM). The sensitivity analyses were carried out using mechanisms 

SanDiego-2014, Caltech-2015, Aramco-II-2016 and Glarborg-2018. The experimental conditions 

are given for each type of measurements. The grey shaded rectangle is the domain of low 

sensitivity of reactions.

To sum up, at high temperatures (i.e. for shock tube measurements), the sensitivity analysis 

results obtained from the four best performing mechanisms have significant consistency. The rate 

coefficients of the most sensitive reactions of all mechanisms are similar with each other. The only 

significant exception is reaction R2 (CH3 + O2 = CH2O + OH). Based on the performance of the 

various mechanisms, the present study indicated that the proper selection of the rate parameters of 

R2 reaction is important and the rate coefficient of this reaction has to be determined in further 

experimental and theoretical studies at low temperatures. 

The case of low temperature conditions (corresponding mainly to RCM measurements) is very 

different. There is an inconsistency of sensitivity analysis results among the various mechanisms 

and there are only a few reactions which have high sensitivity according to all the mechanisms. A 

better description of the low temperature ignition of methane requires a more accurate 

determination of the rate parameters of several reaction steps. As the sensitivity analysis results 

indicate, these are mainly the reactions of HO2, H2O2, and alkylperoxides.

6.3 Main differences between the four best mechanisms

The four best mechanisms are Aramco-II-2016, Caltech-2015, Glarborg-2018 and SanDiego-

2014 (in the order of increasing error) on average for the reproduction of ignition delay times of 

methane combustion, noting that Aramco-II-2016 was the only one that reproduced well the RCM 

measurements. In this section these four mechanisms are compared, using Figs. S8 to S11 in the 
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Supplementary Material. These figures summarize the simulation and sensitivity analysis results 

in various intervals of temperature, pressure, equivalence ratio and diluent ratio in measurement 

categories ST without PRR, ST with PRR and RCM. The bottom of each figure shows the error 

function value E for these four mechanisms, averaged for each interval. The upper four rows of 

panels plot the scaled normalized sensitivity coefficients, calculated by using each of the four 

mechanisms. The sensitivity coefficients are given for those 99 reactions for which the absolute 

scaled normalized sensitive coefficient is larger than 0.1 in any condition interval. The same 

reaction step is indicated with the same legend in each figure and each panel, which allows a 

transparent comparison of the sensitivity analysis results. Figures S8 to S11 have a common 

legend table after Fig. S11. It is immediately obvious, that even if the performance of the four 

mechanisms is very similar in some intervals, the indicated important reactions may be different.

Fig. S8 shows that the performance of the four mechanisms is similarly good for the ST with 

PRR measurements in the whole temperature range. Considering the ST without PRR 

measurements, all mechanisms have a good performance, except for SanDiego-2014 at low 

temperatures. For SanDiego-2014 at low temperatures, reaction R2: CH3 + O2 = CH2O + OH has 

a considerable promoting effect on ignition (the scaled sensitivity coefficient is nearly 1, see 

panel (a)) and this reaction has low sensitivity for the other mechanisms. Fig. S5(a) shows that the 

SanDiego-2014 mechanism tends to estimate shorter IDTs if the temperature is lower than 1400K. 

The rate coefficient of this reaction in SanDiego-2014 is much higher than in the other mechanisms 

(see Fig. 11(b)) in the whole temperature range. However, decreasing this rate coefficient alone 

does not improve the performance of the SanDiego-2014 mechanism at low temperatures.

Under high temperature conditions (T > 2200K), all the four mechanisms are relatively 

inaccurate. Reaction R8: CH3 + H + M = CH4 + M (LP) is the only reaction that has large sensitivity 
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above 2200 K, but much lower sensitivity under other conditions. The rate parameters of this 

reaction deserve a closer look.

Fig. S8(o) shows that only Aramco-II-2016 simulates well the low temperature RCM 

measurements. Aramco-II-2016 is different from the other three mechanisms, since the sensitivity 

analysis results show (see panel (i)) that four reactions, CH4 + O = CH3 + OH (R11), CH4 + OH = 

CH3 + H2O (R7), C2H5OH + CH3O2 = C2H5O + CH3O2H (*), and CH3 + O = CH2O + H are the 

main ignition promoting reactions under RCM conditions. Also, HOCHO + H => H2 + CO + OH 

(*) is an important ignition hindering reaction in Aramco-II-2016. These reaction steps either do 

not exist in the other three mechanisms (indicated by asterisk), or have a minor role in them. 

Regarding different pressure conditions, Fig. S9 shows that the four mechanisms reproduce well 

the shock tube experimental data, except for the SanDiego-2014 mechanism above 80 atm for the 

ST data, and the Aramco-II-2016 mechanism near 20 atm for all ST data. In ST measurements 

with PRR, Aramco-II-2016 has the poorest performance. Again, Aramco-II-2016 is the best 

performing mechanism at all pressures under RCM conditions.

Figures S10 and S11 present that the performance of the four mechanisms changes in good 

accordance with changing equivalence ratio and dilution, respectively. Figure S10(m) shows that 

in the equivalence ratio range [0.60, 0.99), SanDiego-2014 is apparently better than the other 

mechanisms. According to Fig. S11(m), the errors of Aramco-II-2016 and SanDiego-214 are much 

higher than that of Caltech-2015, if the diluent ratio is less than 0.5. The obvious difference among 

all mechanisms is that the sensitivity coefficient of CH3 + CH3 + M = C2H6 + M is higher in 

Aramco-II-2016 than in Caltech-2015, and the origin of it is that Aramco-II-2016 uses higher rate 

coefficient for this reaction than the other mechanisms (see Fig. 14).
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Figure. 14. Comparison of the rate coefficients for reaction CH3 + CH3 + M = C2H6 + M (M = 

N2). The units of the rate coefficients are expressed in cm, mol, s.
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7 Conclusion

Methane is the main component of natural gas, which is a widely used clean fuel, thus accurate 

simulation of its combustion is of paramount importance. Furthermore, its kinetic mechanism is 

also an important part of the combustion mechanisms of larger hydrocarbons. Having reviewed 

the related experimental papers, large amount of measurements of ignition delay times in shock 

tubes (4939 data points in 574 datasets) and rapid compression machines (582/69) were collected 

from 73 publications. The initial mixtures included oxygen, diluent (N2, Ar, He, CO2 or H2O), and 

neat methane or blends of CH4 with H2 and/or CO. The details of the experimental datasets are 

given in the Supplementary Material. All the experimental data were encoded in ReSpecTh 

Kinetics Data Format v2.3 (RKDF 2.3) XML files, which are freely available at the ReSpecTh 

Information Site 5. From this site one can also download code Optima++ 110, a simulation 

framework that allows  convenient automatic testing of reaction mechanisms against large amount 

of experimental data by using simulation packages FlameMaster 111 and OpenSMOKE++ 112,113. 

The collected ignition delay data were used for mechanism comparison in this study, and these 

data files may also promote methane mechanism development studies in the future.

We found that 37 different ignition delay time (IDT) definitions have been applied in shock tube 

measurements. The corresponding IDT definitions were stored in the RKD data files and 

Optima++ can employ the appropriate IDT definition at the simulations. The only exception was 

when the experimental ignition delay time was determined based on the vibration relaxation of the 

produced CO, which would have required the inclusion of an additional detailed submodel, thus 

the related experimental data were omitted from the comparison. 

The shock tube measurement data were published with or without measured pressure rise rate. 

These were considered as two separate categories of measurements in our investigations and in 
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general the IDTs of the latter group could be reproduced better. When slightly increasing pressure 

was detected but neglected by the experimentalist, we categorized the reasons. For the RCM 

measurements, in the various papers we found several different handlings of heat loss during the 

compression period, and we recalculated it based on the nonreactive pressuretime histories 

whenever these raw data were available. The obtained revised volumetime profiles are published 

in the corresponding RKD files.

We selected 13 widely used methane combustion mechanisms and presented the ranges of 

conditions at which these mechanisms had been validated by the original authors. In this study all 

mechanisms were tested under much wider ranges of conditions. We compared four excited OH 

submechanisms and two excited CH submechanisms that have been published as parts of methane 

combustion mechanisms. The excited OH submechanism of Aramco-II-2016 could significantly 

improve the performance of several mechanisms, thus it was selected and coupled with those 

mechanisms that did not contain such a reaction block. Also, the excited CH submechanism of 

Aramco-II-2016 was used in a similar way for the related shock tube experiments.

Agreement between the experimental data and the simulation results was investigated using the 

mean squared and the mean signed errors. Furthermore, Pearson correlation coefficients were used 

to characterize the pairwise similarity of the simulation results obtained by the mechanisms. 

Whenever it was possible, the published experimental uncertainties were used for the calculation 

of the metrics above. In the lack of such information, the uncertainty of the ignition delay time 

was estimated from the published uncertainties of temperature and/or pressure using error 

propagation. Also, the statistical scatter of the data points in each data series was taken into 

account. The derived uncertainty of the experimental data was stored in the RKD data files.
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The results of mechanism comparison studies show that almost all mechanisms reproduced the 

high-temperature ignition delay times well, while ignition delay times measured in shock tubes 

and rapid compression machines at low temperatures (below 1000 K) could also be well-

reproduced by several mechanisms. It should be noted that Olm et al. 1 2 excluded the low 

temperature (T < 1000K) H2 and H2/CO shock tube ignition delay data without measured 

pressuretime profiles since the mechanisms could reproduce these data poorly. However, in the 

present work we found that most mechanisms were able to give reasonable prediction of even the 

low temperature ignition delay times. The error function values of Aramco-II-2016 and Glarborg-

2018 were lower than E=9 (i.e. agreement within 3 on average) for the low initial temperature (T 

< 900K) shock tube measurements. On the other hand, almost half of the mechanisms could 

reproduce the long ignition delays (> 105 s) measured in shock tubes accurately.

The performance of the mechanisms was investigated in various ranges of temperature, pressure, 

equivalence ratio and diluent ratio. Four mechanisms, Aramco-II-2016, Caltech-2015, Glarborg-

2018 and SanDiego-2014 proved to be generally the best mechanisms, and additionally Aramco-

II-2016 had the smallest prediction error under RCM conditions. We recommend Aramco-II-2016 

as the most robust mechanism as it performs reliably under wide range of conditions. However, it 

does not mean that Aramco-II-2016 has the best performance under all conditions, since for 

example Caltech-2015 has the lowest error in the initial temperature range 1300-1900 K. Therefore, 

if an accurate methane combustion mechanism is needed under a specific range of conditions, it 

can be selected based on the content of Figs. 5 to 8.

Local sensitivity analysis was carried out for the best four mechanisms. The 15 most sensitive 

reactions of each mechanism in each measurement category were identified and compared. For 

high temperature ignitions, the results of sensitivity analysis of the best performing mechanisms 
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were similar and the rate coefficients of the most sensitive reactions of all the four mechanisms 

were close to each other. The only exception was reaction CH3 + O2 = CH2O + OH, which was 

highly sensitive according to all mechanisms, but used with very different rate parameters. In the 

case of RCM measurements, there is an inconsistency among the sensitivity analysis results 

obtained for the various mechanisms. The sensitivity analysis results of RCM simulations show 

that the rate parameters of reactions involving peroxides, HO2 and H2O2 have to be known more 

accurately in order to improve the performance of the mechanisms at low temperatures.
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