564 research outputs found

    Effect of Tensor Correlations on Gamow-Teller States in 90Zr and 208Pb

    Get PDF
    The tensor terms of the Skyrme effective interaction are included in the self-consistent Hartree-Fock plus Random Phase Approximation (HF+RPA) model. The Gamow-Teller (GT) strength function of 90Zr and 208Pb are calculated with and without the tensor terms. The main peaks are moved downwards by about 2 MeV when including the tensor contribution. About 10% of the non-energy weighted sum rule is shifted to the excitation energy region above 30 MeV by the RPA tensor correlations. The contribution of the tensor terms to the energy weighted sum rule is given analytically, and compared to the outcome of RPA.Comment: 13 pages, 2 figures,2 table

    Effective lattice actions for correlated electrons

    Full text link
    We present an exact, unconstrained representation of the electron operators in terms of operators of opposite statistics. We propose a path--integral representation for the tt-JJ model and introduce a parameter controlling the semiclassical behaviour. We extend the functional approach to the Hubbard model and show that the mean--field theory is equivalent to considering, at Hamiltonian level, the Falikov--Kimball model. Connections with a bond-charge model are also discussed.Comment: 12 pages, REVTeX 3.0, no figure

    Generation of two-mode nonclassical states and a quantum phase gate operation in trapped ion cavity QED

    Full text link
    We propose a scheme to generate nonclassical states of a quantum system, which is composed of the one-dimensional trapped ion motion and a single cavity field mode. We show that two-mode SU(2) Schr\"odinger-cat states, entangled coherent states, two-mode squeezed vacuum states and their superposition can be generated. If the vibration mode and the cavity mode are used to represent separately a qubit, a quantum phase gate can be implemented.Comment: to appear in PR

    Spin-dependent transport in a Luttinger liquid

    Full text link
    We develop a detailed theory for spin transport in a one-dimensional quantum wire described by Luttinger liquid theory. A hydrodynamic description for the quantum wire is supplemented by boundary conditions taking into account the exchange coupling between the magnetization of ferromagnetic reservoirs and the boundary magnetization in the wire. Spin-charge separation is shown to imply drastic and qualitative consequences for spin-dependent transport. In particular, the spin accumulation effect is quenched except for fine-tuned parameter regimes. We propose several feasible setups involving an external magnetic field to detect this phenomenon in transport experiments on single-wall carbon nanotubes. In addition, electron-electron backscattering processes, which do not have an important effect on thermodynamic properties or charge transport, are shown to modify spin-dependent transport through long quantum wires in a crucial way.Comment: 23 pages, 4 figure

    Atomistic Studies of Defect Nucleation during Nanoindentation of Au (001)

    Get PDF
    Atomistic studies are carried out to investigate the formation and evolution of defects during nanoindentation of a gold crystal. The results in this theoretical study complement the experimental investigations [J. D. Kiely and J. E. Houston, Phys. Rev. B, v57, 12588 (1998)] extremely well. The defects are produced by a three step mechanism involving nucleation, glide and reaction of Shockley partials on the {111} slip planes noncoplanar with the indented surface. We have observed that slip is in the directions along which the resolved shear stress has reached the critical value of approximately 2 GPa. The first yield occurs when the shear stresses reach this critical value on all the {111} planes involved in the formation of the defect. The phenomenon of strain hardening is observed due to the sessile stair-rods produced by the zipping of the partials. The dislocation locks produced during the second yield give rise to permanent deformation after retraction.Comment: 11 pages, 13 figures, submitted to Physical Review

    Generation of arbitrary two dimensional motional state of a trapped ion

    Full text link
    We present a scheme to generate an arbitrary two-dimensional quantum state of motion of a trapped ion. This proposal is based on a sequence of laser pulses, which are tuned appropriately to control transitions on the sidebands of two modes of vibration. Not more than (M+1)(N+1)(M+1)(N+1) laser pulses are needed to generate a pure state with upper phonon number MM and NN in the xx and yy direction respectively.Comment: to appear in PR

    Hadron yields and spectra in Au+Au collisions at the AGS

    Full text link
    Inclusive double differential multiplicities and rapidity density distributions of hadrons are presented for 10.8 A GeV/c Au+Au collisions as measured at the AGS by the E877 collaboration. The results indicate that large amounts of stopping and collective transverse flow effects are present. The data are also compared to the results from the lighter Si+Al system.Comment: 12 pages, latex, 10 figures, submitted to Nuclear Physics A (Quark Matter 1996 Proceedings

    Amorphous layer formation in Al86.0Co7.6Ce6.4 glass-forming alloy by large-area electron beam irradiation

    Get PDF
    Amorphous Al-Co-Ce alloys are of interest because of their resistance to corrosion, but high cooling rates are generally required to suppress the formation of crystalline phases. In this study, the surface of a bulk crystalline Al-Co-Ce alloy of a glass-forming composition was treated using large area electron beam (LAEB) irradiation. Scanning electron microscopy shows that, compared to the microstructure of the original crystalline material, the treated surface exhibits greatly improved microstructural and compositional uniformity. Glancing angle X-ray diffraction conducted on the surface of treated samples indicates the formation of the amorphous phase following 25 and 50 pulses at 35 kV cathode voltage. However, when the samples are treated with 100 and 150 pulses at 35 kV cathode voltage of electron beam irradiation, the treated layer comprises localised crystalline regions in an amorphous matrix. In addition, the formation of cracks in the treated layer is found to be localised around the Al8Co2Ce phase in the bulk material. Overall, crack length per unit area had no clear change with an increase in the number of pulses

    Measurement of Pion Enhancement at Low Transverse Momentum and of the Delta-Resonance Abundance in Si-Nucleus Collisions at AGS Energy

    Get PDF
    We present measurements of the pion transverse momentum (p_t) spectra in central Si-nucleus collisions in the rapidity range 2.0<y<5.0 for p_t down to and including p_t=0. The data exhibit an enhanced pion yield at low p_t compared to what is expected for a purely thermal spectral shape. This enhancement is used to determine the Delta-resonance abundance at freeze-out. The results are consistent with a direct measurement of the Delta-resonance yield by reconstruction of proton-pion pairs and imply a temperature of the system at freeze-out close to 140 MeV.Comment: 12 pages + 4 figures (uuencoded at end-of-file
    • …
    corecore