277 research outputs found

    Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots

    Get PDF
    We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA) and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%), release ammonium (39%), secrete siderophores (38%) and a limited part of them synthetized IAA and IAA-like molecules (5%). Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP) of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards

    VvMYB60 expression is restricted to guard cells and correlates with stomatal conductance in the grape leaf

    Get PDF
    Grapevine (Vitis vinifera L.) is traditionally grown under non-irrigated field conditions in many cropping environments, including dry lands and semiarid regions. Good osmotic adjustment, architecture of the root system, xylem embolism and efficient stomatal control of water loss account for the drought resistance traits of the Vitis genus. Among these features, the regulation of stomatal activity is of particular relevance, as it directly shapes the isohydric versus anysohydric behaviour of different grape species and cultivars. Increasing evidence indicates a role for the transcriptional control of gene expression in modulating stomatal responses to both biotic and abiotic stimuli. R2R3 MYB transcription factors have been identified as key regulators of stomatal opening and transpirational water loss under stress in different plant species. We identified the grape gene VvMYB60 (VIT_08s0056g00800) as the functional ortholog of AtMYB60 (At1g08810), involved in the regulation of stomatal activity in Arabidopsis. Here, we report results from the analysis of VvMYB60 expression in the grape leaf, including: 1. The qPCR analyses of stomata-enriched grape epidermal fragments and lasermicrodissected guard cells; 2. The confocal analysis of grape leaves agro-infiltrated with the VvMYB60promoter::GFP construct; 3. The analysis of changes in VvMYB60 expression relatively to variations in stomatal conductance (gs) in plants grown under control or drought stress conditions. As a whole our data confirmed the guard cell-specificity of VvMYB60 expression in the grape leaf and revealed a positive correlation between gs and the relative abundance of the VvMYB60 transcripts, thus substantiating the notion of VvMYB60 being a transcriptional mediator of stomatal activity in grape

    H2O2 Signature and Innate Antioxidative Profile Make the Difference Between Sensitivity and Tolerance to Salt in Rice Cells

    Get PDF
    Salt tolerance is a complex trait that varies between and within species. H2O2 profiles as well as antioxidative systems have been investigated in the cultured cells of rice obtained from Italian rice varieties with different salt tolerance. Salt stress highlighted differences in extracellular and intracellular H2O2 profiles in the two cell cultures. The tolerant variety had innate reactive oxygen species (ROS) scavenging systems that enabled ROS, in particular H2O2, to act as a signal molecule rather than a damaging one. Different intracellular H2O2 profiles were also observed: in tolerant cells, an early and narrow peak was detected at 5 min; while in sensitive cells, a large peak was associated with cell death. Likewise, the transcription factor salt-responsive ethylene responsive factor 1 (TF SERF1), which is known for being regulated by H2O2, showed a different expression profile in the two cell lines. Notably, similar H2O2 profiles and cell fates were also obtained when exogenous H2O2 was produced by glucose/glucose oxidase (GOX) treatment. Under salt stress, the tolerant variety also exhibited rapid upregulation of K+ transporter genes in order to deal with K+/Na+ impairment. This upregulation was not detected in the presence of oxidative stress alone. The importance of the innate antioxidative profile was confirmed by the protective effect of experimentally increased glutathione in salt-treated sensitive cells. Overall, these results underline the importance of specific H2O2 signatures and innate antioxidative systems in modulating ionic and redox homeostasis for salt stress tolerance

    Genome communication in plants mediated by organelle-n-ucleus-located proteins

    Get PDF
    An increasing number of eukaryotic proteins have been shown to have a dual localization in the DNA-containing organelles, mitochondria and plastids, and/or the nucleus. Regulation of dual targeting and relocation of proteins from organelles to the nucleus offer the most direct means for communication between organelles as well as organelles and nucleus. Most of the mitochondrial proteins of animals have functions in DNA repair and gene expression by modelling of nucleoid architecture and/or chromatin. In plants, such proteins can affect replication and early development. Most plastid proteins with a confirmed or predicted second location in the nucleus are associated with the prokaryotic core RNA polymerase and are required for chloroplast development and light responses. Few plastid-nucleus-located proteins are involved in pathogen defence and cell cycle control. For three proteins, it has been clearly shown that they are first targeted to the organelle and then relocated to the nucleus, i.e. the nucleoid-associated proteins HEMERA and Whirly1 and the stroma-located defence protein NRIP1. Relocation to the nucleus can be experimentally demonstrated by plastid transformation leading to the synthesis of proteins with a tag that enables their detection in the nucleus or by fusions with fluoroproteins in different experimental set-ups. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'

    The co-chaperone p23 controls root development through the modulation of auxin distribution in the Arabidopsis root meristem

    Get PDF
    p23 co-chaperones play a key role in the root meristem maintenance via regulation of auxin signalling and the consequent balance between cell differentiation and division rate at the transition zon

    The co-chaperone p23 controls root development through the modulation of auxin distribution in the Arabidopsis root meristem.

    Get PDF
    Homologues of the p23 co-chaperone of HSP90 are present in all eukaryotes, suggesting conserved functions for this protein throughout evolution. Although p23 has been extensively studied in animal systems, little is known about its function in plants. In the present study, the functional characterization of the two isoforms of p23 in Arabidopsis thaliana is reported, suggesting a key role of p23 in the regulation of root development. Arabidopsis p23 mutants, for either form, show a short root length phenotype with a reduced meristem length. In the root meristem a low auxin level associated with a smaller auxin gradient was observed. A decrease in the expression levels of PIN FORMED PROTEIN (PIN)1, PIN3, and PIN7, contextually to an inefficient polar localization of PIN1, was detected. Collectively these results suggest that both Arabidopsis p23 isoforms are required for root growth, in particular in the maintenance of the root meristem, where the proteins are located

    Intracellular Ca2+ pools in PC12 cells. Three intracellular pools are distinguished by their turnover and mechanisms of Ca2+ accumulation, storage, and release.

    Get PDF
    Three, non-cytosolic Ca2+ pools were characterized in intact PC12 cells. The first pool, sensitive to both inositol 1,4,5-trisphosphate and caffeine (Zacchetti, D., Clementi, E., Fasolato, C., Zottini, M., Grohovaz, F., Fumagalli, G., Pozzan, T., and Meldolesi, J. (1991) J. Biol. Chem. 266, 20152-20158) accounts for approximately equal to 200 microM of Ca2+/liter of cell water (less than 30% of total exchangeable Ca2+) and takes up Ca2+ from the cytosol via a Ca(2+)-ATPase, blocked by thapsigargin. A second pool, approximately equal to 400 microM/liter, is insensitive to both inositol 1,4,5-trisphosphate, caffeine, and thapsigargin and is released by the Ca2+ ionophore ionomycin. This pool is probably heterogeneous and its intracellular localization and physiological roles remain undefined. The third pool, approximately equal to 170 mumoles of Ca2+/liter, was discharged by the combination of ionomycin together with a substance that collapsed intracellular pH gradients, such as monensin or NH4Cl. This indicates that the pool is acidic, at variance with the first two. When exocytosis was stimulated, the size of this pool declined, indicating its primary residence within secretory granules. In the conditions of our experiments no major transfer of Ca2+ among the pools seemed to occur. This is the first comprehensive description of non-cytosolic Ca2+ pools investigated in intact neurosecretory cells by non-invasive procedures
    corecore