80 research outputs found

    Gate-based spin readout of hole quantum dots with site-dependent gg-factors

    Get PDF
    The rapid progress of hole spin qubits in group IV semiconductors has been driven by their potential for scalability. This is owed to the compatibility with industrial manufacturing standards, as well as the ease of operation and addressability via all-electric drives. However, owing to a strong spin-orbit interaction, these systems present variability and anisotropy in key qubit control parameters such as the Land\'e gg-factor, requiring careful characterisation for reliable qubit operation. Here, we experimentally investigate a hole double quantum dot in silicon by carrying out spin readout with gate-based reflectometry. We show that characteristic features in the reflected phase signal arising from magneto-spectroscopy convey information on site-dependent gg-factors in the two dots. Using analytical modeling, we extract the physical parameters of our system and, through numerical calculations, we extend the results to point out the prospect of conveniently extracting information about the local gg-factors from reflectometry measurements.Comment: Main manuscript: 12 pages, 8 figures. Supplementary Information: 3 pages, 2 figure

    Electronic band structure of a Tl/Sn atomic sandwich on Si(111)

    Get PDF
    A two-dimensional compound made of one monolayer of Tl and one monolayer of Sn on Si(111) has been found to have a sandwichlike structure in which the Sn layer (having the milk-stool arrangement) resides on the bulklike terminated Si(111) surface and the Tl layer (having the honeycomb-chained-trimer arrangement) is located above the Sn layer. The electronic band structure of the compound contains two spin-split surface-state bands, of which one is nonmetallic and the other is metallic. Near the Fermi level the metallic band is split with the momentum splitting Δk∥=0.037 Å−1 and energy splitting ΔEF=167 meV. The steep dispersion of the band when crossing the Fermi level corresponds to an electron velocity of ≈8.5×105 m/s, which is comparable to the value reported for graphene. The 2D Fermi contours have almost circular shape with spin texture typical for hexagonal surfaces

    Synthesis of two-dimensional TlxBi1-x compounds and Archimedean encoding of their atomic structure

    Get PDF
    Crystalline atomic layers on solid surfaces are composed of a single building block, unit cell, that is copied and stacked together to form the entire two-dimensional crystal structure. However, it appears that this is not an unique possibility. We report here on synthesis and characterization of the one-atomic-layer-thick TlxBi1−x compounds which display quite a different arrangement. It represents a quasi-periodic tiling structures that are built by a set of tiling elements as building blocks. Though the layer is lacking strict periodicity, it shows up as an ideally-packed tiling of basic elements without any skips or halting. The two-dimensional TlxBi1−x compounds were formed by depositing Bi onto the Tl-covered Si(111) surface where Bi atoms substitute appropriate amount of Tl atoms. Atomic structure of each tiling element as well as arrangement of TlxBi1−x compounds were established in a detail. Electronic properties and spin texture of the selected compounds having periodic structures were characterized. The shown example demonstrates possibility for the formation of the exotic low-dimensional materials via unusual growth mechanisms

    Single layer nickel disilicide on surface and as embedded layer

    Get PDF
    Single monolayers of various materials (e.g. graphene, silicene, bismuthene, plumbene, etc) have recently become fascinating and promising objects in modern condensed-matter physics and nanotechnology. However, growing a monolayer of non-layered material is still challenging. In the present report, it will be shown that single monolayer NiSi2 can be fabricated at Si(111) surface stabilized by either Tl, Pb or In monolayers. Nickel atoms were found to intercalate the stabilizing metal layers upon deposition and to reside in the interstitial sites inside the first silicon bilayer of bulk-like-terminated Si(111)1×1 surface. The interstitial positions almost coincide with the bulk NiSi2 atomic positions thus forming NiSi2 single layer. Atomic and electronic structure of formed systems is described in detail by means of a set of experimental techniques, including low-energy electron diffraction, scanning tunneling microscopy, angle-resolved photoemission spectroscopy and also first-principles density-functional-theory calculations. Quality of formed single monolayer NiSi2 was additionally confirmed by in situ four-probe transport measurements that show that single monolayer NiSi2 preserves a metallic-type conductivity down to 2.0 K. Moreover it was found that delta-type structure with atomic sheet of NiSi2 silicide embedded into a crystalline Si matrix can be fabricated using room-temperature overgrowth of a Si film onto the Tl stabilized NiSi2 surface layer. Confinement of the NiSi2 layer to a single atomic plane has been directly confirmed by high-resolution transmission electron microscopy

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure

    Upper limit map of a background of gravitational waves

    Get PDF
    We searched for an anisotropic background of gravitational waves using data from the LIGO S4 science run and a method that is optimized for point sources. This is appropriate if, for example, the gravitational wave background is dominated by a small number of distinct astrophysical sources. No signal was seen. Upper limit maps were produced assuming two different power laws for the source strain power spectrum. For an f^-3 power law and using the 50 Hz to 1.8 kHz band the upper limits on the source strain power spectrum vary between 1.2e-48 Hz^-1 (100 Hz/f)^3 and 1.2e-47 Hz^-1 (100 Hz /f)^3, depending on the position in the sky. Similarly, in the case of constant strain power spectrum, the upper limits vary between 8.5e-49 Hz^-1 and 6.1e-48 Hz^-1. As a side product a limit on an isotropic background of gravitational waves was also obtained. All limits are at the 90% confidence level. Finally, as an application, we focused on the direction of Sco-X1, the closest low-mass X-ray binary. We compare the upper limit on strain amplitude obtained by this method to expectations based on the X-ray luminosity of Sco-X1.Comment: 11 pages, 9 figures, 2 table

    Upper limit map of a background of gravitational waves

    Get PDF
    We searched for an anisotropic background of gravitational waves using data from the LIGO S4 science run and a method that is optimized for point sources. This is appropriate if, for example, the gravitational wave background is dominated by a small number of distinct astrophysical sources. No signal was seen. Upper limit maps were produced assuming two different power laws for the source strain power spectrum. For an f^-3 power law and using the 50 Hz to 1.8 kHz band the upper limits on the source strain power spectrum vary between 1.2e-48 Hz^-1 (100 Hz/f)^3 and 1.2e-47 Hz^-1 (100 Hz /f)^3, depending on the position in the sky. Similarly, in the case of constant strain power spectrum, the upper limits vary between 8.5e-49 Hz^-1 and 6.1e-48 Hz^-1. As a side product a limit on an isotropic background of gravitational waves was also obtained. All limits are at the 90% confidence level. Finally, as an application, we focused on the direction of Sco-X1, the closest low-mass X-ray binary. We compare the upper limit on strain amplitude obtained by this method to expectations based on the X-ray luminosity of Sco-X1.Comment: 11 pages, 9 figures, 2 table

    Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia

    Get PDF
    BACKGROUND Patients with elevated triglyceride levels are at increased risk for ischemic events. Icosapent ethyl, a highly purified eicosapentaenoic acid ethyl ester, lowers triglyceride levels, but data are needed to determine its effects on ischemic events. METHODS We performed a multicenter, randomized, double-blind, placebo-controlled trial involving patients with established cardiovascular disease or with diabetes and other risk factors, who had been receiving statin therapy and who had a fasting triglyceride level of 135 to 499 mg per deciliter (1.52 to 5.63 mmol per liter) and a low-density lipoprotein cholesterol level of 41 to 100 mg per deciliter (1.06 to 2.59 mmol per liter). The patients were randomly assigned to receive 2 g of icosapent ethyl twice daily (total daily dose, 4 g) or placebo. The primary end point was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, or unstable angina. The key secondary end point was a composite of cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke. RESULTS A total of 8179 patients were enrolled (70.7% for secondary prevention of cardiovascular events) and were followed for a median of 4.9 years. A primary end-point event occurred in 17.2% of the patients in the icosapent ethyl group, as compared with 22.0% of the patients in the placebo group (hazard ratio, 0.75; 95% confidence interval [CI], 0.68 to 0.83; P<0.001); the corresponding rates of the key secondary end point were 11.2% and 14.8% (hazard ratio, 0.74; 95% CI, 0.65 to 0.83; P<0.001). The rates of additional ischemic end points, as assessed according to a prespecified hierarchical schema, were significantly lower in the icosapent ethyl group than in the placebo group, including the rate of cardiovascular death (4.3% vs. 5.2%; hazard ratio, 0.80; 95% CI, 0.66 to 0.98; P=0.03). A larger percentage of patients in the icosapent ethyl group than in the placebo group were hospitalized for atrial fibrillation or flutter (3.1% vs. 2.1%, P=0.004). Serious bleeding events occurred in 2.7% of the patients in the icosapent ethyl group and in 2.1% in the placebo group (P=0.06). CONCLUSIONS Among patients with elevated triglyceride levels despite the use of statins, the risk of ischemic events, including cardiovascular death, was significantly lower among those who received 2 g of icosapent ethyl twice daily than among those who received placebo. (Funded by Amarin Pharma; REDUCE-IT ClinicalTrials.gov number, NCT01492361

    Stability of AuCl2− from 25 to 1000 °C at Pressures to 5000 bar and Consequences for Hydrothermal Gold Mobilization

    No full text
    Gold is transported in high-temperature chloride-bearing hydrothermal fluids in the form of AuCl2&minus;. The stability of this complex has been extensively studied, but there is still considerable disagreement between available experimental data on the temperature region 300&ndash;500 &deg;C. To solve this problem, we measured the solubility of gold in HCl/NaCl fluids (NaCl concentration varied from 0.1 to 3 mol&middot;(kg&middot;H2O)&minus;1) at 450 &deg;C and pressures from 500 to 1500 bar (1 bar = 105 Pa). The experiments were performed using a batch autoclave method at contrasting redox conditions: in reduced experiments hydrogen was added to the autoclave, and in oxidized experiments the redox state was controlled by the aqueous SO2/SO3 buffer. Hydrogen pressure in the autoclaves was measured after the experiments in the reduced system. The gold solubility constant, Au(cr) + HCl&deg;(aq) + Cl&minus; = AuCl2&minus; + 0.5 H2&deg;(aq), was determined for the experimental T-P parameters as log Ks&deg; = &minus;4.77 &plusmn; 0.07 (500 bar), &minus;5.11 &plusmn; 0.08 (1000 bar), and &minus;5.43 &plusmn; 0.09 (1500 bar). These data, together with values from the literature for temperatures from 25 to 1000 &deg;C, were fitted to the simple equation log Ks&deg; = 4.302 &minus; 7304∙T(K)&minus;1 &minus; 4.77∙log d(w) + 11080∙(log d(w))∙T(K)&minus;1 &minus; 6.94 &times; 106∙(log d(w)) T(K)&minus;2, where d(w) is the pure water density. This equation can be used together with the extended Debye&ndash;H&uuml;ckel equation for activity coefficients to calculate gold solubility at pressures up to 5000 bar at fluid chlorinities at least up to 30 wt %. The speciation of gold in natural chloride-bearing fluids is discussed

    Creation and use of highly productive hay fields and pastures in mountaineous regions of North Caucasus

    No full text
    Available from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio
    corecore