9 research outputs found

    Development of a portable leaf photosynthesis and volatile organic compounds emission system

    Get PDF
    Understanding how plant carbon metabolism responds to environmental variables such as light is central to understanding ecosystem carbon cycling and the production of food, biofuels, and biomaterials. Here, we couple a portable leaf photosynthesis system to an autosampler for volatile organic compounds (VOCs) to enable field observations of net photosynthesis simultaneously with emissions of VOCs as a function of light. Following sample collection, VOCs are analyzed using automated thermal desorption-gas chromatograph-mass spectrometry (TD-GC–MS). An example is presented from a banana plant in the central Amazon with a focus on the response of photosynthesis and the emissions of eight individual monoterpenes to light intensity. Our observations reveal that banana leaf emissions represent a 1.1 +/- 0.1% loss of photosynthesis by carbon. Monoterpene emissions from banana are dominated by trans-β-ocimene, which accounts for up to 57% of total monoterpene emissions at high light. We conclude that the developed system is ideal for the identification and quantification of VOC emissions from leaves in parallel with CO2 and water fluxes.The system therefore permits the analysis of biological and environmental sensitivities of carbon metabolism in leaves in remote field locations, resulting in the emission of hydrocarbons to the atmosphere. • A field-portable system is developed for the identification and quantification of VOCs from leaves in parallel with leaf physiological measurements including photosynthesis and transpiration. • The system will enable the characterization of carbon and energy allocation to the biosynthesis and emission of VOCs linked with photosynthesis (e.g. isoprene and monoterpenes) and their biological and environmental sensitivities (e.g. light, temperature, CO2). • Allow the development of more accurate mechanistic global VOC emission models linked with photosynthesis, improving our ability to predict how forests will respond to climate change. It is our hope that the presented system will contribute with critical data towards these goals across Earth's diverse tropical forests. © 202

    Green leaf volatile emissions during high temperature and drought stress in a central Amazon rainforest

    Get PDF
    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C5 and C6 GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C6 GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress. © 2015 by the authors; licensee MDPI, Basel, Switzerland

    A list of land plants of Parque Nacional do Caparaó, Brazil, highlights the presence of sampling gaps within this protected area

    Get PDF
    Brazilian protected areas are essential for plant conservation in the Atlantic Forest domain, one of the 36 global biodiversity hotspots. A major challenge for improving conservation actions is to know the plant richness, protected by these areas. Online databases offer an accessible way to build plant species lists and to provide relevant information about biodiversity. A list of land plants of “Parque Nacional do Caparaó” (PNC) was previously built using online databases and published on the website "Catálogo de Plantas das Unidades de Conservação do Brasil." Here, we provide and discuss additional information about plant species richness, endemism and conservation in the PNC that could not be included in the List. We documented 1,791 species of land plants as occurring in PNC, of which 63 are cited as threatened (CR, EN or VU) by the Brazilian National Red List, seven as data deficient (DD) and five as priorities for conservation. Fifity-one species were possible new ocurrences for ES and MG states

    Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest

    Get PDF
    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C5 and C6 GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C6 GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress

    Floristic survey of vascular plants of a poorly known area in the Brazilian Atlantic Forest (Flona do Rio Preto, Espírito Santo)

    No full text
    The Atlantic Forest is one of the most threatened biomes in the world. Despite that, this biome still includes many areas that are poorly known floristically, including several protected areas, such as the "Floresta Nacional do Rio Preto" ("Flona do Rio Preto"), located in the Brazilian State of Espírito Santo. This study used a published vascular plant species list for this protected area from the "Catálogo de Plantas das Unidades de Conservação do Brasil" as the basis to synthesise the species richness, endemism, conservation and new species occurrences found in the "Flona do Rio Preto".The published list of vascular plants was based on field expeditions conducted between 2018 and 2020 and data obtained from herbarium collections available in online databases. Overall, 722 species were documented for the "Flona do Rio Preto", 711 of which are native to Brazil and 349 are endemic to the Atlantic Forest. In addition, 60 species are geographically disjunct between the Atlantic and the Amazon Forests. Most of the documented species are woody and more than 50% of these are trees. Twenty-three species are threatened (CR, EN and VU), while five are Data Deficient (DD). Thirty-two species are new records for the State of Espírito Santo. Our results expand the knowledge of the flora of the Atlantic Forest and provide support for the development of new conservation policies for this protected area
    corecore