13 research outputs found

    Constructive and Destructive Processes During the 2018–2019 Eruption Episode at Shiveluch Volcano, Kamchatka, Studied From Satellite and Aerial Data

    Get PDF
    Dome-building volcanoes often develop by intrusion and extrusion, recurrent destabilization and sector collapses, and renewed volcanic growth inside the collapse embayment. However, details of the structural architecture affiliated with renewed volcanic activity and the influences of regional structures remain poorly understood. Here, we analyze the recent activity of Shiveluch volcano, Kamchatka Peninsula, characterized by repeated episodes of lava dome growth and destruction due to large explosions and gravity-driven collapses. We collect and process a multisensor dataset comprising high-resolution optical (aerial and tri-stereo Pleiades satellite), radar (TerraSAR-X and TanDEM-X satellites), and thermal (aerial and MODIS, Sentinel-2, and Landsat 8 satellites) data. We investigate the evolution of the 2018–2019 eruption episode and evaluate the morphological and structural changes that led to the August 29, 2019 explosive eruption and partial dome collapse. Our results show that a new massive lava lobe gradually extruded onto the SW flank of the dome, concurrent with magmatic intrusion into the eastern dome sector, adding 0.15 km3 to the lava dome complex. As the amphitheater infilled, new eruption craters emerged along a SW-NE alignment close to the amphitheater rim. Then, the large August 29, 2019 explosive eruption occurred, followed by partial dome collapse, which was initially directed away from this SW-NE trend. The eruption and collapse removed 0.11 km3 of the dome edifice and led to the formation of a new central SW-NE-elongated crater with dimensions of 430 m × 490 m, a collapse scar at the eastern part of the dome, and pyroclastic density currents that traveled ∌12 km downslope. This work sheds light on the structural architecture dominated by a SW-NE lineament and the complex interplay of volcano constructive and destructive processes. We develop a conceptual model emphasizing the relevance of structural trends, namely, 1) a SW-NE-oriented (possibly regional) structure and 2) the infilled amphitheater and its decollement surface, both of which are vital for understanding the directions of growth and collapse and for assessing the potential hazards at both Shiveluch and dome-building volcanoes elsewhere

    UAS-Based Tracking of the Santiaguito Lava Dome, Guatemala

    Get PDF
    Imaging growing lava domes has remained a great challenge in volcanology due to their inaccessibility and the severe hazard of collapse or explosion. Changes in surface movement, temperature, or lava viscosity are considered crucial data for hazard assessments at active lava domes and thus valuable study targets. Here, we present results from a series of repeated survey flights with both optical and thermal cameras at the Caliente lava dome, part of the Santiaguito complex at Santa Maria volcano, Guatemala, using an Unoccupied Aircraft System (UAS) to create topography data and orthophotos of the lava dome. This enabled us to track pixel-offsets and delineate the 2D displacement field, strain components, extrusion rate, and apparent lava viscosity. We find that the lava dome displays motions on two separate timescales, (i) slow radial expansion and growth of the dome and (ii) a narrow and fast-moving lava extrusion. Both processes also produced distinctive fracture sets detectable with surface motion, and high strain zones associated with thermal anomalies. Our results highlight that motion patterns at lava domes control the structural and thermal architecture, and different timescales should be considered to better characterize surface motions during dome growth to improve the assessment of volcanic hazards

    Satellite Radar and Camera Time Series Reveal Transition from Aligned to Distributed Crater Arrangement during the 2021 Eruption of Cumbre Vieja, La Palma (Spain)

    No full text
    Magma-filled dikes may feed erupting fissures that lead to alignments of craters developing at the surface, yet the details of activity and migrating eruptions at the crater row are difficult to monitor and are hardly understood. The 2021 Tajogaite eruption at the Cumbre Vieja, La Palma (Spain), lasted 85 days and developed a pronounced alignment of craters that may be related to changes within the volcano edifice. Here, we use COSMO-SkyMed satellite radar data and ground-based time-lapse photographs, offering a high-resolution dataset to explore the locations and characteristics of evolving craters. Our results show that the craters evolve both gradually and suddenly and can be divided into three main phases. Phase 1, lasting the first 6 weeks of the eruption, was characterized by a NW–SE linear evolution of up to seven craters emerging on the growing cone. Following two partial collapses of the cone to the northwest and a seismicity increase at depth, Phase 2 started and caused a propagation of the main activity toward the southeastern side, together with the presence of up to 11 craters along this main NW–SE trend. Associated with strong deep and shallow earthquakes, Phase 3 was initiated and continued for the final 2 weeks of the eruption, expressed by the development of up to 18 craters, which became dominant and clustered in the southeastern sector in early December 2021. In Phase 3, a second and oblique alignment and surface fracture was identified. Our findings that crater and eruption changes coincide together with an increase in seismic activity at depth point to a deep driver leading to crater and morphology changes at the surface. These also suggest that crater distributions might allow for improved monitoring of changes occurring at depth, and vice versa, such that strong seismicity changes at depth may herald the migration and new formation of craters, which have major implications for the assessment of tephra and lava flow hazards on volcanoes

    The evolving volcano-ice interactions of Crater Glacier, Mount St. Helens, Washington (USA)

    No full text
    Interactions between volcanoes and glaciers provide insight to the evolution of a volcanic edifice and may be an indicator for renewed volcanic activity. At Mount St. Helens, Crater Glacier, which has formed in the volcanic crater after the eruption in 1980, is one of the world’s last expanding glaciers and provides a unique opportunity to characterize the evolution of a glacier expanding onto an area of significant thermal flux. We combine photographic documentation and glaciovolcanic cave surveys with remote sensing data from Google Earth, UAS, and LiDAR to analyze the present state of Crater Glacier and reconstruct its development since the emplacement of the 2004–2008 lava dome. Our results show that snow accumulation has caused Crater Glacier to grow from 2009 to 2019 by approximately 13.8 × 106 m3, during which time the glacier toe advanced by several hundred meters. The glacier-dome interface shift toward higher elevations against the 2004–2008 lava dome and subsequent encroachment onto thermally active areas led to glacier modification via extensive subglacial cave system formation. Analysis of subglacial tephra layers revealed the existence of juvenile material from the 2004–2008 eruption cycle, providing insights about glacier subsidence of ~ 40 m since 2004/2005 in spite of net growth. Although the lava dome is cooling, the glacier-dome interface seems to have become increasingly stable in the past few years. Our results suggest that glacier development in the accumulation area adjacent to the dome is now being affected by the thermal characteristics of the lava dome itself, making monitoring internal glacier development via tracking glaciovolcanic cave expansion a potentially important volcano monitoring tool. Zusammenfassung Die Interaktionen von Vulkanen und Gletschern tragen hĂ€ufig zum VerstĂ€ndnis ĂŒber die Entwicklung eines vulkanischen Systems bei und können als Indikator fĂŒr wiederkehrende vulkanische AktivitĂ€t dienen. Crater Glacier, der nach der Eruption 1980 im Krater des Mount St. Helens entstanden ist, ist einer der letzten wachsenden Gletscher weltweit und bietet somit eine einmalige Chance, die Entwicklung eines Gletschers in Verbindung mit erheblichen WĂ€rmeflĂŒssen zu charakterisieren. Neben einer fotografischen Dokumentation des Gletschers machen wir uns die Kartierung vulkanischer Gletscherhöhlen zu Nutze. Diese kombinieren wir mit Fernerkundungsdaten von Google Earth sowie Drohnen- und LiDAR-Daten, um den aktuellen Zustand des Gletschers zu charakterisieren und seine Entwicklung seit dem letzten Lavadomwachstum zwischen 2004 und 2008 zu rekonstruieren. Unsere Ergebnisse zeigen, dass die ausreichende Akkumulation von Schnee zum Wachstum des Gletschers mit einem Massenzuwachs von ca. 13,8 x 106 m3 zwischen 2009 und 2019 gefĂŒhrt hat. Neben dem Voranschreiten der Gletscherzunge um mehrere hundert Meter hat sich das Wachstum ebenfalls rund um den neuen Lavadom bemerkbar gemacht. Durch die Verschiebung der Kontaktzone von Gletscher und Lavadom hin zu höheren Bereichen des Doms und der damit verbundenen Interaktion zwischen Gletscher und geothermaler AktivitĂ€t ist es zu einer deutlichen VerĂ€nderung des Gletschers durch die Ausbildung subglazialer Höhlensysteme gekommen. Analysen von im Gletscher eingebetteten Tephraschichten, die vermutlich der letzten AktivitĂ€t zwischen 2004 und 2008 zuzuordnen sind, deuten trotz des allgemeinen Wachstums auf eine Setzung des Gletschers um etwa 40 m seit 2004/05 hin. Obwohl der Lavadom an Hitze verliert, scheint die Kontaktzone von Gletscher und Dom in den letzten Jahren zunehmend konstant geworden zu sein. Unsere Ergebnisse deuten darauf hin, dass der Gletscher in diesem Bereich derzeit vor allem durch die thermalen Eigenschaften des Lavadoms beeinflusst wird. Dadurch kommt dem Monitoring interner Gletscherstrukturen mittels Beobachtung vulkanischer Gletscherhöhlen eine potenziell wichtige Bedeutung bei der VulkanĂŒberwachung zu

    Load Stress Controls on Directional Lava Dome Growth at VolcĂĄn de Colima, Mexico

    No full text
    International audienceDuring eruptive activity of andesitic stratovolcanoes, the extrusion of lava domes, their collapse and intermittent explosions are common volcanic hazards. Many lava domes grow in a preferred direction, in turn affecting the direction of lava flows and pyroclastic density currents. Access to active lava domes is difficult and hazardous, so detailed data characterizing lava dome growth are typically limited, keeping the processes controlling the directionality of extrusions unclear. Here we combine TerraSAR-X satellite radar observations with high-resolution airborne photogrammetry to assess morphological changes, and perform finite element modeling to investigate the impact of loading stress on shallow magma ascent directions associated with lava dome extrusion and crater formation at VolcĂĄn de Colima, MĂ©xico. The TerraSAR-X data, acquired in ~1-m resolution spotlight mode, enable us to derive a chronology of the eruptive processes from intensity-based time-lapse observations of the general crater and dome evolution. The satellite images are complemented by close-range airborne photos, processed by the Structure-from-Motion workflow. This allows the derivation of high-resolution digital elevation models, providing insight into detailed loading and unloading features. During the observation period from Jan-2013 to Feb-2016, we identify a dominantly W-directed dome growth and lava flow production until Jan-2015. In Feb-2015, following the removal of the active summit dome, the surface crater widened and elongated along a NE-SW axis. Later in May-2015, a new dome grew toward the SW of the crater while a separate vent developed in the NE of the crater, reflecting a change in the direction of magma ascent and possible conduit bifurcation. Finite element models show a significant stress change in agreement with the observed magma ascent direction changes in response to the changing surface loads, both for loading (dome growth) and unloading (crater forming excavation) cases. These results allow insight into shallow dome growth dynamics and the migration of magma ascent in response to changing volcano summit morphology. They further highlight the importance of detailed volcano summit morphology surveillance, as changes in direction or location of dome extrusion may have major implications regarding the directions of potential volcanic hazards, such as pyroclastic density currents generated by dome collapse.Introductio
    corecore