13 research outputs found

    A comparative genomics multitool for scientific discovery and conservation

    Get PDF
    The Zoonomia Project is investigating the genomics of shared and specialized traits in eutherian mammals. Here we provide genome assemblies for 131 species, of which all but 9 are previously uncharacterized, and describe a whole-genome alignment of 240 species of considerable phylogenetic diversity, comprising representatives from more than 80% of mammalian families. We find that regions of reduced genetic diversity are more abundant in species at a high risk of extinction, discern signals of evolutionary selection at high resolution and provide insights from individual reference genomes. By prioritizing phylogenetic diversity and making data available quickly and without restriction, the Zoonomia Project aims to support biological discovery, medical research and the conservation of biodiversity

    Leveraging base-pair mammalian constraint to understand genetic variation and human disease

    No full text
    Thousands of genomic regions have been associated with heritable human diseases, but attempts to elucidate biological mechanisms are impeded by an inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function, agnostic to cell type or disease mechanism. Single-base phyloP scores from 240 mammals identified 3.3% of the human genome as significantly constrained and likely functional. We compared phyloP scores to genome annotation, association studies, copy-number variation, clinical genetics findings, and cancer data. Constrained positions are enriched for variants that explain common disease heritability more than other functional annotations. Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease

    ​Comparative genomics of Balto, a famous historic dog, captures lost diversity of 1920s sled dogs

    No full text
    We reconstruct the phenotype of Balto, the heroic sled dog renowned for transporting diphtheria antitoxin to Nome, Alaska, in 1925, using evolutionary constraint estimates from the Zoonomia alignment of 240 mammals and 682 genomes from dogs and wolves of the 21st century. Balto shares just part of his diverse ancestry with the eponymous Siberian husky breed. Balto's genotype predicts a combination of coat features atypical for modern sled dog breeds, and a slightly smaller stature. He had enhanced starch digestion compared with Greenland sled dogs and a compendium of derived homozygous coding variants at constrained positions in genes connected to bone and skin development. We propose that Balto's population of origin, which was less inbred and genetically healthier than that of modern breeds, was adapted to the extreme environment of 1920s Alaska

    Integrating gene annotation with orthology inference at scale

    No full text
    Annotating coding genes and inferring orthologs are two classical challenges in genomics and evolutionary biology that have traditionally been approached separately, limiting scalability. We present TOGA (Tool to infer Orthologs from Genome Alignments), a method that integrates structural gene annotation and orthology inference. TOGA implements a different paradigm to infer orthologous loci, improves ortholog detection and annotation of conserved genes compared with state-of-the-art methods, and handles even highly fragmented assemblies. TOGA scales to hundreds of genomes, which we demonstrate by applying it to 488 placental mammal and 501 bird assemblies, creating the largest comparative gene resources so far. Additionally, TOGA detects gene losses, enables selection screens, and automatically provides a superior measure of mammalian genome quality. TOGA is a powerful and scalable method to annotate and compare genes in the genomic era

    Relating enhancer genetic variation across mammals to complex phenotypes using machine learning

    No full text
    Protein-coding differences between species often fail to explain phenotypic diversity, suggesting the involvement of genomic elements that regulate gene expression such as enhancers. Identifying associations between enhancers and phenotypes is challenging because enhancer activity can be tissue-dependent and functionally conserved despite low sequence conservation. We developed the Tissue-Aware Conservation Inference Toolkit (TACIT) to associate candidate enhancers with species' phenotypes using predictions from machine learning models trained on specific tissues. Applying TACIT to associate motor cortex and parvalbumin-positive interneuron enhancers with neurological phenotypes revealed dozens of enhancer-phenotype associations, including brain size-associated enhancers that interact with genes implicated in microcephaly or macrocephaly. TACIT provides a foundation for identifying enhancers associated with the evolution of any convergently evolved phenotype in any large group of species with aligned genomes

    The functional and evolutionary impacts of human-specific deletions in conserved elements.

    No full text
    Conserved genomic sequences disrupted in humans may underlie uniquely human phenotypic traits. We identified and characterized 10,032 human-specific conserved deletions (hCONDELs). These short (average 2.56 base pairs) deletions are enriched for human brain functions across genetic, epigenomic, and transcriptomic datasets. Using massively parallel reporter assays in six cell types, we discovered 800 hCONDELs conferring significant differences in regulatory activity, half of which enhance rather than disrupt regulatory function. We highlight several hCONDELs with putative human-specific effects on brain development, includin

    The contribution of historical processes to contemporary extinction risk in placental mammals

    No full text
    Species persistence can be influenced by the amount, type, and distribution of diversity across the genome, suggesting a potential relationship between historical demography and resilience. In this study, we surveyed genetic variation across single genomes of 240 mammals that compose the Zoonomia alignment to evaluate how historical effective population size (Ne) affects heterozygosity and deleterious genetic load and how these factors may contribute to extinction risk. We find that species with smaller historical Ne carry a proportionally larger burden of deleterious alleles owing to long-term accumulation and fixation of genetic load and have a higher risk of extinction. This suggests that historical demography can inform contemporary resilience. Models that included genomic data were predictive of species' conservation status, suggesting that, in the absence of adequate census or ecological data, genomic information may provide an initial risk assessment.Funding was provided by NIH grant R01 HG008742 (E.K.K.); the Swedish Research Council Distinguished Professor Award (K.L.-T.); the Wallenberg Foundation (K.L.-T.); European Research Council European Union’s Horizon 2020 864203 (T.M.-B.); MINECO/FEDER, UE grant BFU2017-86471-P (T.M.-B.); Agencia Estatal de Investigación “Unidad de Excelencia María de Maeztu” CEX2018-000792-M (T.M.-B.); a Howard Hughes International Early Career award (T.M.-B.); Secretaria d’Universitats i Recerca (T.M.-B.); and CERCA Programme del Departament d’Economia i Coneixement de la Generalitat de Catalunya (T.M.-B.)

    Chiropterans are a hotspot for horizontal transfer of DNA transposons in mammalia

    Get PDF
    This project was supported by the National Science Foundation (grant numbers DEB 1838283 and IOS 2032006 to D.M.-S. and Dav.R. and DEB 1838273 and DGE 1633299 to L.D.), National Institutes of Health (grant numbers R01HG002939 and U24HG010136 to J.S., R.H., A.F.A.S., and Je.R.), NHGRI (grant number R01HG008742 to Z.C.), Irish Research Council (grant number IRCLA/ 2017/58 to E.T.), Science Foundation Ireland (grant number 19/FFP/6790 to E.T.), Max Planck Research Group awarded by the Max Planck Gesellschaft to S.V., Human Frontiers Science Program (grant number RGP0058/2016 to S.V.), UK Research and Innovation (grant number MR/T021985/1 to S.V.), and the Swedish Research Council Distinguished Professor Award to K.L.-T.Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats.Publisher PDFPeer reviewe
    corecore