9 research outputs found

    Space advanced technology demonstration satellite

    Get PDF
    The Space Advanced Technology demonstration satellite (SATech-01), a mission for low-cost space science and new technology experiments, organized by Chinese Academy of Sciences (CAS), was successfully launched into a Sun-synchronous orbit at an altitude of similar to 500 km on July 27, 2022, from the Jiuquan Satellite Launch Centre. Serving as an experimental platform for space science exploration and the demonstration of advanced common technologies in orbit, SATech-01 is equipped with 16 experimental payloads, including the solar upper transition region imager (SUTRI), the lobster eye imager for astronomy (LEIA), the high energy burst searcher (HEBS), and a High Precision Magnetic Field Measurement System based on a CPT Magnetometer (CPT). It also incorporates an imager with freeform optics, an integrated thermal imaging sensor, and a multi-functional integrated imager, etc. This paper provides an overview of SATech-01, including a technical description of the satellite and its scientific payloads, along with their on-orbit performance

    Effect of Aluminum on Microstructure and Mechanical Properties of Weld Metal of Q960 Steel

    No full text
    High-strength low-alloy (HSLA) steel is used in important steel structural members because of its strength and plastic toughness. Q960 steel is HSLA steel obtained by adding an appropriate amount of alloy elements and quenching and tempering treatment on the basis of ordinary low-carbon steel. This kind of steel has strong hardenability due to the alloy elements added. Cold cracks, embrittlement and softening of the heat-affected zone easily occur after welding. In particular, the low-temperature impact toughness cannot meet the requirements and limits its use. In this paper, self-shielded welding is used to adjust the content of aluminum in flux-cored wire. The relationship between weld metal (WM) microstructure and strength and properties was studied by tensile test and impact test, and the influence mechanism of Al content on weld metal microstructure and properties was analyzed. The results show that when the content of Al is 0.21%, the impact energy at 0 °C~−60 °C is the best, the tensile strength can reach 1035 MPA and the number of pores is small. The size of inclusions in WM is mostly less than 1.0 μm Al2O3 spherical oxide. It can become the center of acicular ferrite (AF) and increase the nucleation probability. However, with the increase of Al content, large irregular AlN inclusions are produced, which reduces the tensile strength and impact energy of the welded joint

    Effect of Aluminum on Microstructure and Mechanical Properties of Weld Metal of Q960 Steel

    No full text
    High-strength low-alloy (HSLA) steel is used in important steel structural members because of its strength and plastic toughness. Q960 steel is HSLA steel obtained by adding an appropriate amount of alloy elements and quenching and tempering treatment on the basis of ordinary low-carbon steel. This kind of steel has strong hardenability due to the alloy elements added. Cold cracks, embrittlement and softening of the heat-affected zone easily occur after welding. In particular, the low-temperature impact toughness cannot meet the requirements and limits its use. In this paper, self-shielded welding is used to adjust the content of aluminum in flux-cored wire. The relationship between weld metal (WM) microstructure and strength and properties was studied by tensile test and impact test, and the influence mechanism of Al content on weld metal microstructure and properties was analyzed. The results show that when the content of Al is 0.21%, the impact energy at 0 °C~−60 °C is the best, the tensile strength can reach 1035 MPA and the number of pores is small. The size of inclusions in WM is mostly less than 1.0 μm Al2O3 spherical oxide. It can become the center of acicular ferrite (AF) and increase the nucleation probability. However, with the increase of Al content, large irregular AlN inclusions are produced, which reduces the tensile strength and impact energy of the welded joint

    Photothermal-Driven Liquid Crystal Elastomers: Materials, Alignment and Applications

    No full text
    Liquid crystal elastomers (LCEs) are programmable deformable materials that can respond to physical fields such as light, heat, and electricity. Photothermal-driven LCE has the advantages of accuracy and remote control and avoids the requirement of high photon energy for photochemistry. In this review, we discuss recent advances in photothermal LCE materials and investigate methods for mechanical alignment, external field alignment, and surface-induced alignment. Advances in the synthesis and orientation of LCEs have enabled liquid crystal elastomers to meet applications in optics, robotics, and more. The review concludes with a discussion of current challenges and research opportunities

    Research on Sparse Denoising of Strong Earthquakes Early Warning Based on MEMS Accelerometers

    No full text
    In view of the fact that the noise in the same frequency band as the useful signal in the MEMS acceleration sensor observation data cannot be effectively removed by traditional filtering methods, a denoising method for strong earthquake signals based on the theory of sparse representation and compressive sensing is proposed in this paper. This skillfully realized the separation of strong earthquake signals from noise by adopting a fixed dictionary and utilizing sparse characteristics. Furthermore, considering the weakness of the sparse denoising method based on the fixed dictionary in the high signal-to-noise ratio, a spare denoising method based on learning an over-complete dictionary is proposed. Through the initial given seismic data, the ideal over-complete dictionary is trained to achieve seismic data denoising. In addition, for the interference waves of non-seismic events, this paper proposes an idea based on sparse representation classification to remove such non-seismic interference directly. Combining the ideas of noise reduction and non-seismic event elimination, we can obtain a standard sparse anti-interference denoising model for earthquake early warning. It’s innovative that this model implements the sparse theory into the field of earthquake early warning. According to the experimental results, in the case of heavy noise, the denoising model based on sparse representation can reach average SNR of 8.73 and an average MSE of 29.53, and the denoising model based on compression perception can reach average SNR of 7.29 and an average MSE 41.34, and the denoising model based on learning dictionary can reach average SNR 11.07 and average MSE 17.32. The performance of these models is better than the traditional FIR filtering method (average SNR −0.73 and average MSE 260.37) or IIR filtering method (average SNR 4.73 and average MSE 73.95). On the other hand, the anti-interference method of the sparse classification proposed in this paper can accurately distinguish non-seismic interference events from natural earthquakes. The classification accuracy of the method based on the noise category of the selected test data set reaches 100% and achieves good results
    corecore