490 research outputs found

    Toy Models for Galaxy Formation versus Simulations

    Full text link
    We describe simple useful toy models for key processes of galaxy formation in its most active phase, at z > 1, and test the approximate expressions against the typical behaviour in a suite of high-resolution hydro-cosmological simulations of massive galaxies at z = 4-1. We address in particular the evolution of (a) the total mass inflow rate from the cosmic web into galactic haloes based on the EPS approximation, (b) the penetration of baryonic streams into the inner galaxy, (c) the disc size, (d) the implied steady-state gas content and star-formation rate (SFR) in the galaxy subject to mass conservation and a universal star-formation law, (e) the inflow rate within the disc to a central bulge and black hole as derived using energy conservation and self-regulated Q ~ 1 violent disc instability (VDI), and (f) the implied steady state in the disc and bulge. The toy models provide useful approximations for the behaviour of the simulated galaxies. We find that (a) the inflow rate is proportional to mass and to (1+z)^5/2, (b) the penetration to the inner halo is ~50% at z = 4-2, (c) the disc radius is ~5% of the virial radius, (d) the galaxies reach a steady state with the SFR following the accretion rate into the galaxy, (e) there is an intense gas inflow through the disc, comparable to the SFR, following the predictions of VDI, and (f) the galaxies approach a steady state with the bulge mass comparable to the disc mass, where the draining of gas by SFR, outflows and disc inflows is replenished by fresh accretion. Given the agreement with simulations, these toy models are useful for understanding the complex phenomena in simple terms and for back-of-the-envelope predictions.Comment: Resubmitted to MNRAS after responding to referee's comments; Revised figure

    The Role of CO2 in Aqueous Alteration of Ultra-Mafic Rocks and the Formation of MF-,FE-Rich Aqueous Solutons on Early Mars

    Get PDF
    An adequate understanding of water on Mars that moves beyond the simplistic "warmwet" vs. "cold-dry" dichotomy must include strong constraints on the variables: water/rock ratio, time, temperature, and chemical composition. By constraining these variables first on local, then regional and global scales we will be capable of precisely targeting landed missions to definitively understand the history of water on Mars and the possible existence of life. Data from remote sensing of Mars, landed missions, and martian meteorites indicate that secondary minerals formed from aqueous fluids on Mars are predominately Fe- and Mg-rich. The unique Mg-, Fe-rich carbonates in the ALH 84001 meteorite provide an excellent opportunity to provide strong constraints on an Fe-, Mg-rich aqueous system on early Mars. This work seeks to use the unusual chemical compositions of the ALH 84001 carbonates as a constraint for the composition of their formation fluid. These constraints can be used to better understand aqueous processes at a critical time in martian history

    Press shaping of arched components by means of a mobile tool

    Full text link
    The best tool motion in a press is considered, when producing U-shaped components from sheet. The elastoplastic properties of the deformed material are taken into account. © 2013 Allerton Press, Inc

    Partitioning of crystalline and amorphous phases during freezing of simulated Enceladus ocean fluids

    Get PDF
    This work was supported by The Leverhulme Trust (grant number RPG‐2016‐153).Saturn's ice‐covered moon Enceladus may contain the requisite conditions for life. Its potentially habitable subsurface ocean is vented into space as large cryovolcanic plumes that can be sampled by spacecraft, acting as a window to the ocean below. However, little is known about how Enceladus’ ocean fluids evolve as they freeze. Using cryo‐imaging techniques, we investigated solid phases produced by freezing simulated Enceladean ocean fluids at endmember cooling rates. Our results show that under flash‐freezing conditions (>10 K s−1), Enceladus‐relevant fluids undergo segregation, whereby the precipitation of ice templates the formation of brine vein networks. The high solute concentrations and confined nature of these brine veins means that salt crystallization is kinetically inhibited and glass formation (vitrification) can occur at lower cooling rates than typically required for vitrification of a bulk solution. Crystalline salts also form if flash‐frozen fluids are re‐warmed. The 10 µm‐scale distribution of salt phases produced by this mechanism differs markedly from that of gradually cooled (∼1 K min−1) fluids, showing that they inherit a textural signature of their formation conditions. The mineralogy of cryogenic carbonates can be used as a probe for cooling rate and parent fluid pH. Our findings reveal possible endmember routes for solid phase production from Enceladus’ ocean fluids and mechanisms for generating compositional heterogeneity within ice particles on a sub‐10 µm scale. This has implications for understanding how Enceladus' ocean constituents are incorporated into icy particles and delivered to space.Publisher PDFPeer reviewe

    The Age of the Milky Way Inner Halo

    Full text link
    The Milky Way galaxy is observed to have multiple components with distinct properties, such as the bulge, disk, and halo. Unraveling the assembly history of these populations provides a powerful test to the theory of galaxy formation and evolution, but is often restricted due to difficulties in measuring accurate stellar ages for low mass, hydrogen-burning stars. Unlike these progenitors, the "cinders" of stellar evolution, white dwarf stars, are remarkably simple objects and their fundamental properties can be measured with little ambiguity from spectroscopy. Here I report observations and analysis of newly formed white dwarf stars in the halo of the Milky Way, and a comparison to published analysis of white dwarfs in the well-studied 12.5 billion-year-old globular cluster Messier 4. From this, I measure the mass distribution of the remnants and invert the stellar evolution process to develop a new relation that links this final stellar mass to the mass of their immediate progenitors, and therefore to the age of the parent population. By applying this technique to a small sample of four nearby and kinematically-confirmed halo white dwarfs, I measure the age of local field halo stars to be 11.4 +/- 0.7 billion years. This age is directly tied to the globular cluster age scale, on which the oldest clusters formed 13.5 billion years ago. Future (spectroscopic) observations of newly formed white dwarfs in the Milky Way halo can be used to reduce the present uncertainty, and to probe relative differences between the formation time of the last clusters and the inner halo.Comment: Published in Nature, 2012, 486, 90. Second version corrects a missing reference (#10) in the third paragraph and Figure 1 captio

    МЕТОДЫ НОРМАЛИЗАЦИИ СТАТИЧЕСКОГО ГЕОМАГНИТНОГО ПОЛЯ В ЖИЛЫХ ДОМАХ

    Get PDF
    In the paper, we show the necessity of normalization of the static geomagnetic field (GMF) inside high-rise frame-monolithic houses to safe values (90% of the natural rate at least). Massive ferromagnetic construction of these buildings significantly (up to 50 %) weakens the natural GMF. The normalization methods are based on mathematical modeling of GMF in a residential area. Simplified physical models of reinforced concrete building structures are developed and used. The results of experimental studies are also used in the framework of the development of the methods. The following methods of normalization of GMF are presented and justified: 1) the use of special steel with a relative permeability less than 70 in housing construction; 2) restrictions on the use of long steel elements with the elongation coefficient in the critical range of 4<b<28; 3) demagnetization of steel reinforcement before installing; 4) preventing the magnetization of steel reinforcement in the construction process. Practical recommendations for the design of «magnetic clean» houses with comfortable living conditions in connection to the GMF are proposed.Показана необходимость нормализации до безопасных значений индукции статического геомагнитного поля (ГМП) в помещениях высотных каркасно-монолитных жилых домов, массивные ферромагнитные несущие конструкции которых значительно (на 50%) ослабляют естественное ГМП. Теоретически и экспериментально обоснованы методы нормализации ГМП, реализуемые без применения дополнительных экранирующих элементов. Разработаны рекомендации по проектированию и строительству «магниточистых» жилых домов с комфортными условиями проживания по статическому геомагнитному полю.Показана необхідність нормалізації до безпечних значень індукції статичного геомагнітного поля (ГМП) у приміщеннях висотних каркасно-монолітних житлових будинків, масивні феромагнітні несучі конструкції яких значно (на 50%) послаблюють природне ГМП. Теоретично і експериментально обґрунтовані методи нормалізації ГМП, що реалізуються без застосування додаткових екрануючих елементів. Розроблено рекомендації з проектування та будівництва «магніточистих» житлових будинків з комфортними умовами проживання за статичним геомагнітним полем

    Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z\gtrsim2: High velocity dispersions in progenitors of compact quiescent galaxies

    Get PDF
    We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift 2z2.52\leq z \leq2.5 with star formation rates of SFR\sim100M_{\odot} y1^{-1} and masses of log(M/M_{\odot})10.8\sim10.8. Their high integrated gas velocity dispersions of σint\sigma_{\rm{int}}=23030+40^{+40}_{-30} km s1^{-1}, as measured from emission lines of Hα_{\alpha} and [OIII], and the resultant Mσint_{\star}-\sigma_{\rm{int}} relation and M_{\star}-Mdyn_{\rm{dyn}} all match well to those of compact quiescent galaxies at z2z\sim2, as measured from stellar absorption lines. Since log(M_{\star}/Mdyn_{\rm{dyn}})=0.06±0.2=-0.06\pm0.2 dex, these compact SFGs appear to be dynamically relaxed and more evolved, i.e., more depleted in gas and dark matter (<<1313+17^{+17}_{-13}\%) than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than \sim300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at z2z\gtrsim2 are already losing gas to become the immediate progenitors of compact quiescent galaxies by z2z\sim2.Comment: 12 pages, 7 figures, submitted to Ap
    corecore