336 research outputs found
How Do Maternal Subclinical Symptoms Influence Infant Motor Development during the First Year of Life?
An unavoidable reciprocal influence characterizes the mother-child dyad. Within this relationship, the presence of depression, somatization, hostility, paranoid ideation, and interpersonal sensitivity symptoms at a subclinical level and their possible input on infant motor competences has not been yet considered. Bearing in mind that motor abilities represent not only an indicator of the infant\u2019s health-status, but also the principal field to infer his/her needs, feelings and intentions, in this study the quality of infants\u2019 movements were assessed and analyzed in relationship with the maternal attitudes. The aim of this research was to investigate if/how maternal symptomatology may pilot infant\u2019s motor development during his/her first year of life by observing the characteristics of motor development in infants aged 0\u201311 months. Participants included 123 mothers and their infants (0\u201311 months-old). Mothers\u2019 symptomatology was screened with the Symptom Checklist-90-Revised (SCL-90-R), while infants were tested with the Peabody Developmental Motor Scale-Second Edition. All dyads belonged to a non-clinical population, however, on the basis of SCL-90-R scores, the mothers\u2019 sample was divided into two groups: normative and subclinical. Descriptive, t-test, correlational analysis between PDMS-2 scores and SCL-90-R results are reported, as well as regression models results. Both positive and negative correlations were found between maternal perceived symptomatology, Somatization (SOM), Interpersonal Sensitivity (IS), Depression (DEP), Hostility (HOS), and Paranoid Ideation (PAR) and infants\u2019 motor abilities. These results were further verified by applying regression models to predict the infant\u2019s motor outcomes on the basis of babies\u2019 age and maternal status. The presence of positive symptoms in the SCL-90-R questionnaire (subclinical group) predicted good visual-motor integration and stationary competences in the babies. In particular, depressive and hostility feelings in mothers seemed to induce an infant motor behavior characterized by a major control of the environmental space. When mothers perceived a higher level of hostility and somatization, their babies showed difficulties in sharing action space, such as required in the development of stationary positions and grasping abilities. In a completely different way, when infants can rely on a mother with low-perceived symptoms (normative group) his/her motor performances develop with a higher degree of freedom/independence. These findings suggest, for the first time, that even in a non- clinical sample, mother\u2019s perceived-symptoms can produce important consequences not in infant motor development as a whole, but in some specific areas, contributing to shape the infant\u2019s motor ability and his/her capability to act in the world
Chimeric piggyBac transposases for genomic targeting in human cells.
Integrating vectors such as viruses and transposons insert transgenes semi-randomly and can potentially disrupt or deregulate genes. For these techniques to be of therapeutic value, a method for controlling the precise location of insertion is required. The piggyBac (PB) transposase is an efficient gene transfer vector active in a variety of cell types and proven to be amenable to modification. Here we present the design and validation of chimeric PB proteins fused to the Gal4 DNA binding domain with the ability to target transgenes to pre-determined sites. Upstream activating sequence (UAS) Gal4 recognition sites harbored on recipient plasmids were preferentially targeted by the chimeric Gal4-PB transposase in human cells. To analyze the ability of these PB fusion proteins to target chromosomal locations, UAS sites were randomly integrated throughout the genome using the Sleeping Beauty transposon. Both N- and C-terminal Gal4-PB fusion proteins but not native PB were capable of targeting transposition nearby these introduced sites. A genome-wide integration analysis revealed the ability of our fusion constructs to bias 24% of integrations near endogenous Gal4 recognition sequences. This work provides a powerful approach to enhance the properties of the PB system for applications such as genetic engineering and gene therapy
Collision number statistics for transport processes
Many physical observables can be represented as a particle spending some
random time within a given domain. For a broad class of transport-dominated
processes, we detail how it is possible to express the moments of the number of
particle collisions in an arbitrary volume in terms of repeated convolutions of
the ensemble equilibrium distribution. This approach is shown to generalize the
celebrated Kac formula for the moments of residence times, which is recovered
in the diffusion limit. Some practical applications are illustrated for
bounded, unbounded and absorbing domains.Comment: 4 pages, 4 figure
Fungal aneurism of the right posterior inferior cerebellar artery (PICA)
In this case-report, the Authors show the case of a sudden death occurred in a 38-year-old woman submitted to
surgical excision of a right acoustic neurinoma. At the autopsy, was detected a cerebral hemorrhage with
multifocal localization by a ruptured rare fungal aneurysm of the Posterior Inferior Cerebellar Arthery (PICA).
The PCR analysis, carried out on formalin-fixed paraffin-embedded tissue, identified the Aspergillus Penicillioides
as the involved pathogen.
We discuss the main points of infectious aneurysms, being a potential neurosurgical complication
Residence time and collision statistics for exponential flights: the rod problem revisited
Many random transport phenomena, such as radiation propagation,
chemical/biological species migration, or electron motion, can be described in
terms of particles performing {\em exponential flights}. For such processes, we
sketch a general approach (based on the Feynman-Kac formalism) that is amenable
to explicit expressions for the moments of the number of collisions and the
residence time that the walker spends in a given volume as a function of the
particle equilibrium distribution. We then illustrate the proposed method in
the case of the so-called {\em rod problem} (a 1d system), and discuss the
relevance of the obtained results in the context of Monte Carlo estimators.Comment: 9 pages, 8 figure
Virtual QCD corrections to gluon-initiated diphoton plus jet production at hadron colliders
We present an analytic computation of the gluon-initiated contribution to diphoton plus jet production at hadron colliders up to two loops in QCD. We reconstruct the analytic form of the finite remainders from numerical evaluations over finite fields including all colour contributions. Compact expressions are found using the pentagon function basis. We provide a fast and stable implementation for the colour- and helicity-summed interference between the one-loop and two-loop finite remainders in C++ as part of the NJet library
- …