
AN EFFICIENT BLOCK-BASED INTERPRETER FOR
MPEG-4 STRUCTURED AUDIO

G. Zoia, C. Alberti

Integrated Systems Laboratory, ISL/LSI

Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland

ABSTRACT
The MPEG-4 Audio standard provides a toolset for Audio
synthesis and Audio processing, i.e. Structured Audio (SA).
SA permits to describe algorithms through its Structured
Audio Orchestra Language (SAOL) programming language.
Unlike some other languages of the same type, SAOL has a
sample-by-sample execution structure, and this makes
particularly important the overhead computation in case of
an interpreted decoder implementation. This paper describes
the design of an efficient virtual architecture able to exploit
the data level parallelism contained in many Audio synthesis
and processing algorithms and to consistently reduce the
implementation overhead through a block-by-block execution.

INTRODUCTION
The new MPEG-4 Audio standard provides a toolset for
Audio synthetic generation and Audio digital signal
processing, namely Structured Audio (SA, [1]). SA is based
on its SAOL (Structured Audio Orchestra Language, see [2])
C-like programming language. Unlike its predecessor CSound
[3], SA has a sample-by-sample (s-b-s) execution structure.
Variables are divided into init- control- and audio-rate ones,
and statements can be executed at these three different and
programmable rates; but syntax for a-rate instructions is not
defined for blocks of length audio-rate/control-rate, rather for
each single sample. If this makes possible a correct
implementation of basic functions like recursive filters, on the
other hand it introduces a relevant overhead in case of an
interpreted implementation, the most suitable for embedded
real-time engines.
We present in this paper the design of a virtual Arithmetic and
Logic Unit (ALU), based on a platform independent SAOL
language profiling, able to exploit the block-based data level
parallelism contained in many audio synthesis and processing
algorithms, and to consistently reduce the implementation
overhead. In the first part the fundamental issues for an
efficient SA decoding are briefly discussed; in the second part
the results of the first study phase are exploited to define a
virtual architecture; this is conceived to be easily optimized
on modern superscalar processors and it is able to introduce a
consistent acceleration, particularly when implemented
algorithms do not contain feedback loops. In the last part
experimental results are presented that validate the proposed
approach: speed-up factors in the order of 20 are achieved in
typical algorithms by our SAINT (SA INTerpreter) decoder
over the sample-by-sample MPEG-4 reference software, on
WindowsNT PCs and Solaris UNIX workstations.

FUNDAMENTAL ISSUES IN SA
DECODING

The SA normative text does not specify algorithms, but rather the
correct way to decode SAOL instructions, i.e. to execute
statements, expressions, core opcodes (the built-in standard SA
library) and routings among instruments; it follows that the
computational complexity corresponding to the decoding process
cannot be described neither in terms of a statistical model, for
instance mean value and variance, nor in terms of a worst-
case/best-case model. Actually, the decoding complexity
associated with each single SA performance can theoretically
range from a very low value, near to zero, to a very high one,
exactly as it happens for a C or Java program. A special profiler
has been conceived, which is able to count the several classes of
SAOL operations, from simple mathematical operators up to more
complex non-normative routines; the latter can be added-up as
they are, or flexibly decomposed into more elementary ones; each
parameter can be calculated at three different time granularities
along the performance time axis [4]: control rate, second-per-
second and total count.
The profiling of typical and reference SAOL programs revealed
interesting features of typical synthesis and processing algorithms,
above all concerning their relationship with the set of SAOL core
opcodes. The two most interesting results of the described
analysis are: a) the efficient implementation of the core opcodes
through decomposition and b) the confirmation of the benefit
from a block-by-block (b-b-b) execution scheme.
In SAOL the defined standard core opcodes are 105, but a careful
analysis of them all, validated by the profiling to verify
consistency, reveals that the number of core functions necessary
to optimise them is much smaller, nearly the half. For instance,
the oscillators and table reads can be reduced to two basic
operations, interpolation and phasor, i.e. increment with modulo
check; many specific conversion operators can be translated into a
longer (in terms of number of operations) combination of simpler
operations, since they are not often used; some filters present
evident redundancies, and so on. On the other hand effects,
mathematical operations, most of the filters, some signal
generators, etc. provide a specific functionality, and often their
algorithms are left open to implementers: as a consequence they
require a dedicated core function.
A particular regard was dedicated to the study of the possibility of
a b-b-b execution in SA, without altering the output of the
normative s-b-s language specification. Efficiency of a block
based execution over a sample based one has been previously
proofed in literature [5]. In SA, what could prevent from
executing b-b-b is the presence of an explicit feedback in the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147917606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SAOL code. By explicit feedback we intend here a feedback
programmed using more than one line of code, while an
implicit one is for instance the case of the iir or flanger core
opcodes, where the feedback is hidden at a lower level.
Explicit feedbacks have been detected only in four situations.
The first possibility is when an audio variable is assigned to a
new value after its first use; an increment is the only
considered exception. The second case is an occurrence of the
tablewrite core opcode executed at the audio rate, since using
tablewrite-tableread combinations it is possible to modify and
use an "object", i.e. a table, in different parts of the code; the
same thing is true for the fracdelay core opcode managing
delay lines, which has a structure similar to the tablewrite-
tableread couple because of its object-oriented concept. The
last case is a while loop executed at audio rate. All of these
four cases have to be detected and treated in a special way,
while the rest of the code can be executed on a possibly large
b-b-b basis. Of course, this can be done if the delay
introduced in the real-time synchronization of the complete
MPEG-4 decoding process is tolerable.
These two main statistical results proof, confirming intuition,
that in most cases an efficient implementation of the SA
decoder can be obtained by the design of a virtual machine, or
at least a virtual ALU, based on a vectorial instruction set.

GENERAL ARCHITECTURE OF SAINT

The SA decoder denominated SAINT aims at two main
objectives: first of all to develop an interpreter in the most
efficient way, in order to limit the overhead due to instruction
interpretations; secondly to conceive an instruction set that
best matches the parallelism exploitable in many state-of-the-
art DSPs, processors and multimedia processors [6,7].
Concerning this last issue, SA intrinsically provides two
possibilities for parallel computation: the first is a parallelism
at the data level, that can be exploited when it is possible to
work on vectors (blocks) of data, as previously described; the
second is a parallelism at the instruction level, but only when
different instances of the same instrument are active: this more
precisely induces a SIMD (Single Instruction on Multiple
Data) parallel architecture. The statistical analysis described
earlier convinced to concentrate on the data level parallelism,
which is almost always present, easy to exploit and to port on
different platforms: all of the modern VLIW and SIMD
architectures permit good speed-up factors for this kind of
parallelism. The decision was to design a virtual ALU able to
execute the SA instructions in vectorial form, with a variable
length of the vector, from 1 (for s-b-s execution) to N, which
is normally the length of the control cycle in samples.
The other main goal of SAINT is to preserve simplicity and
effectiveness in the execution engine. The usual structure of
an interpreter has been modified in several aspects, in order to
limit the overhead and maintain a good portability. Aiming at
a tool very similar in its software architecture to a hardware
device, the first effort is to divide the complete decoding in
only two layers: the scheduler/decoder layer and the
instruction layer. The main reason for that is to be able to
easily split the complete process into two separable parts, the
compiler/control task and the real processing task; once this is
accomplished, it is not difficult to keep the first, general

purpose part in a common processor, and execute the intensive
processing possibly in the same CPU, but with the same
effectiveness in a separate co-processor, single or even
distributed; this is achieved through a simple sequence of
monodirectional remote method calls, after a specific resource
allocation, which means allocation of the method codes and their
respective calls.
In practice it is necessary, as a first step, to build a transcoder
from the SAOL code to an intermediate format to be passed to the
computational engine; statements and core opcodes are translated
in the appropriate short sequence of macroinstructions and then
interpreted by the execution unit. While doing that, the SAOL
compiler is also able to break all the nested calls, theoretically
infinite in the number of allowed levels; the vectors of values are
stored in intermediate registers according to their rate. This
flattening procedure also permits to avoid waste of time in useless
evaluation functions when the actual parameter rate is lower than
allowed by the opcode definition. The generated block of code,
for instruments and opcodes, is additionally split into three
different blocks, according to the rate of the statements to be
executed (initialisation, control and audio or sampling rate).
For instance, let’s consider the following SAOL example, which
sends to the output bus the note note obtained from the wavetable
tmap[no] that has base frequency base:

output(loscil(tmap[no], cpsmidi(note),
cpsmidi(base),loop, len)*amp);

Italic font represents here the opcodes at init-rate that convert
from MIDI notation to cycles per second. The following listing
gives a representation of a normal interpreter structure for the
above code. Indentation represents a nested call:

FULL INTERPRETER APPROACH

eval_statement(outbus)
 eval_expression(star)
 eval_var(amp)
 eval_core_opcode(loscil)
 eval_table(tmap[no])
 eval_var(no) // memory access
 eval_core_opcode(cpsmidi)
 eval_var(note) // memory access
 eval_core_opcode(cpsmidi)
 eval_var(bass) // memory access
 eval_var(loop)
 eval_var(len)
 eval_bus(bus)

In the next graphic the execution of the same line of SAOL code
is instead represented with the virtual ALU approach. Again italic
font is used to emphasize init rate instructions:

VALU APPROACH

i_reg[1] = eval_minus(var,69);
i_reg[2] = eval_slash(i_reg[1],12);
i_reg[3] = eval_pow(2,i_reg[2]);
i_reg[4] = eval_gettune(tmap[no]);
i_reg[5] = eval_star(i_reg[3],i_reg[4]);
. . . // 2nd cpsmidi formula calculation
k_reg[1] = eval_var(tmap[no]); // k_rate

a_reg[1] =
eval_phasor(i_reg[5],i_reg[11],loop,len);
a_reg[2] = eval_interp(k_reg[1],
a_reg[1]);
a_reg[3] = eval_star(a_reg[2], amp);
eval_outbus(a_reg[3], bus);

After the decomposition, the block of code at the audio rate is
checked for explicit feedbacks; the current compiler gives the
possibility to label a certain number of contiguous lines as s-
b-s to be executed in such a fashion, after and before two
blocks executed b-b-b.
On one hand, the core opcode decompositions and the
creation of intermediate registers permit to flatten the block of
code and to split it properly into three blocks. On the other
hand this introduces an additional number of instructions to
execute; experimental results proof that this is not a heavy
drawback if virtual methods for code interpretation are
properly designed.

THE VIRTUAL INSTRUCTION SET
DEFINITION

The first part of the virtual instruction set is composed by the
SAOL set of expression operators and statements, with the
exception of while: this is replaced by if / jump_back because,
if the guard expression is a composite one and the
intermediate registers mechanism is adopted, the expression to
be checked begins before the while itself.
The core opcodes are the construct of SAOL in which the
majority of the computation is usually executed. Indeed they
constitute a heterogeneous set of functionality, and they
describe very frequent and demanding operations as well as
rarely used and specific ones. The objective is to isolate the
computationally more complex routines to give them an entry
in the instruction set table; the remaining group of opcodes is
less meaningful and will not have a dedicate entry. For
instance, the complete group of pitch converters is translated
into the corresponding sequence of elementary operations, by
mean of the definition formulas. Another example is the group
of table operations tableread, tablewrite and oscillators,
which constitute the core of a majority of musical and
processing algorithms (wavetables, FM, and many of the most
popular synthesis methods, among others). All of them are
based on two main operations, interpolation and phase
modulo increment, together with the unavoidable memory
accesses for interpolations. In the case of e.g. the doscil core
opcode, which loops once over a wavetable, after the
boundary check the functionality is decomposed as follows:

i_reg[1] = get_par(t,1); // get table_SR
i_reg[2] = div(i_reg[1], s_rate);
a_reg[1] = phasor(0, 1, i_reg[2], 1,
100); //phases
i_reg[3] = get_par(t, 2); // get size
a_reg[2] = mul(a_reg[1], i_reg[3]);
res = interp(t, a_reg[2]); // interpolate

where 3 vectorial operations, at line 3, 5 and 6, are executed at
each control cycle for a block of e.g. 100 samples, if this is

permitted by the algorithm. The time wasted in additional calls
can be recovered avoiding tests on the audio-rate operations. The
other oscillators and tableread are implemented in a similar way.
The majority of the filters have an open implementation, and
again they require a specific instruction; only allpass and comb
can be unified, and the two different fir and iir, in the case of
simple or tabulated coefficients. Fifty-three macro-instructions are
enough to represent all the opcodes.
The general criteria adopted to introduce a new instruction in the
set were first of all the statistical results of the profiling phase,
then the normative text and the implicit feedback loops: in fact, it
is not wise to break them into explicit ones. The last two issues
force, in a certain sense, to keep some complex instructions in the
set. This is not a great problem in software, while in a hypotetical
hw implementation some aspects still need to be further
investigated. Considering statements and operators, the present
definition of the virtual ALU is composed of about 70
instructions. Only a single numeric format, 32-bit floating-point,
is normative in SA: different instructions for different rates are
not useful if the vector length is flexible.
To run a control cycle, the SA scheduler must invoke methods to
execute the control- and audio-rate blocks of code. Since all
nested calls have been flattened by the compiler, it only has to call
functions one after the other, specifying the variables to be used
and where to store the results: the scheduler works as a
fetch/decode unit. In the case of a test instruction, i.e. an if or a
while, the scheduler has to receive back the result of the
operation, in order to decide if a subblock of code has to be
executed or not, exactly as it happens in program counters for
jump instructions.

EXPERIMENTAL RESULTS

The virtual ALU architecture described in the previous sections
has been implemented in C (compiler) and C++ (execution unit).
Different measurements on different versions of the decoder have
been conducted. The SAINT tool has been compiled on two
different platforms, an IBM/Cyrix at 200 MHz (Pentium
compatible) with 64 MB of RAM running Windows NT4 and
BorlandC++ 5.02, and a Sun UltraSPARC 2 UNIX workstation
with 256 MB of RAM running SunOS 5.6 and its default cc/CC
compiler. Code has been optimized for speed. Five different
groups of simulations have been considered, measuring the
decoding time elapsed until the end of the performance.
We report here two examples: the first is a common wavetable
synthesis algorithm, where a stereo piano at 44100 Hz is
generated from monophonic wavetables, and filtered by a
reverberation based on a classic scheme with two allpass and four
comb filters [8]. The mean polyphony of the score file,
considering the effect of sustain, is approximately 3.5, the score
duration is 18.5 seconds. The comparative results for the PC
platform are shown in Figure 1. In the graphic, the six columns
from right to left are respectively associated to: a) the MPEG-4
reference software; b) the SAINT decoder without any
optimization; c) the SAINT decoder with a b-b-b execution, when
possible; d) the previous decoder with the flattened structure for
interpretation; e) for the PC platform, the SAINT decoder with the
"Optivec" free downloadable vectorial libraries for Pentium; f) the
duration of the complete score file in a real-time reproduction.

18.5 17.06

34.77 35.55

103.95

306.87

0

50

100

150

200

250

300

350

f e d c b a

Wavetable piano

Figure 1 Experimental results for different approaches

The chosen interpolation factor is 3: C++ code is based on
harmonic functions (MacLaurin series), while the vectorial
libraries use spline interpolation. The b-b-b execution
introduces a speed-up factor of nearly 3, here with a block
length of 441. When the block of code is flattened, without
nested calls, performances do not vary relevantly: this is a
good result, because it permits to simplify the execution
without penalty in speed, even if the total amount of functions
calls has increased. Finally, the introduction of vectorial
libraries on some basic functions (in this case only for
interpolation, mathematical operators and summing bus)
shows how this approach can be effective: consider in fact
that parallelism is exploited here only at the software level,
while the vectorial instruction set can be optimized with a
much greater efficiency on a truly parallel co-processor.
The other synthesis example is an FM generated clarinet; the
frequency modulation part of the algorithm, very similar to
examples previously tested in literature [9], is essentially
based on the oscil core opcode. The orchestra contains a
reverberation effect computationally similar to that used for
the wavetable piano. Experimental results are reported in
Figure 2.

3.6 4.43
11.4 11.85

26.96

80.55

0

10

20

30

40

50

60

70

80

90

f e d c b a

FM clarinet

Figure 2 Experimental results for different approaches II

It is noticeable that in this example, always stereo at 44100
Hz, even the SAINT decoder with vectorial libraries does not

reach enough speed for a real-time performance. In this case the
profiler shows that, in one second of score performance, peaks are
present of 7x105 interpolations, more than 106 divisions and 2x106
other mathematical opcodes, without considering other floating-
point operations. In particular, the interpolation factor is always
equal to 3.

ENVISAGED EVOLUTION OF SAINT

We have presented in this paper an efficient solution for the
MPEG-4 SA decoder. What we consider as the most important
evolution of SAINT is the complete migration of the proposed
virtual ALU structure towards a complete SA virtual machine
architecture. This further evolution will allow implementing a
complete SA remote machine, able to allocate and execute
programs, after having received the blocks of code from the
general-purpose MPEG-4 terminal.

References

1. ISO/IEC JTC1/SC29/WG11 (MPEG98) document N2503-

sub5. "Information Technology - Coding of Audio-Visual
objects. Part 3: Audio. Subpart 5: Structured Audio". MPEG-
4 Audio International Standard.

2. Scheirer E.D., B. L. Vercoe: "SAOL: The MPEG-4
Structured Audio Orchestra Language." Computer Music
Journal 23 (2) : 23-35, 1999.

3. Vercoe, B.: "CSound: a Manual for the Audio Processing
System". Cambridge, MA: MIT Media Laborytory.

4. Zoia, G. "A method for Complexity Measurements in
Structured Audio". ISO/IEC JTC1/SC29/WG11 (MPEG98)
document M3602, Dublin - July 1998.

5. Dannenberg, R. B., N. Thompson: "Real-Time Software
Synthesis on Superscalar Architectures". Computer Music
Journal 21 (3) : 83-94, 1997.

6. Espasa R., M. Valero: "Exploiting Instruction- and Data-
Level Parallelism". IEEE Micro, September - October 1997 :
20-27.

7. Flynn, M. J.: "Computer Architecture: Pipelined and Parallel
Processor Design". Sudbury, MA: Jones and Bartlett
Publishers, 1995.

8. Roads, C., 1996. "The Computer Music Tutorial".
Cambridge, MA: MIT Press.

9. Pope, S.: "Machine Tongues XV: Three Packages for
Software Sound Synthesis". Computer Music Journal 17 (2) :
23-54, 1993.

