
 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

 DAFX-1

A VIRTUAL DSP ARCHITECTURE FOR MPEG-4 STRUCTURED AUDIO

Giorgio Zoia and Claudio Alberti

Integrated Systems Laboratory (ISL/LSI)
Swiss Federal Institute of Technology

{giorgio.zoia, claudio.alberti}@epfl.ch

ABSTRACT

The MPEG-4 Audio standard provides a toolset for synthetic
Audio generation and Audio processing called Structured Audio
(SA). SA permits to describe algorithms through its Structured
Audio Orchestra Language (SAOL) programming language.
Unlike some other languages of the same type, SAOL has a
sample-by-sample execution structure, and this makes particularly
important the overhead computation in the case of an interpreted
decoding. This paper describes the design of a virtual DSP
architecture able to exploit the data level parallelism contained in
many audio synthesis and processing algorithms and to
consistently reduce the implementation overhead.

1. INTRODUCTION

Since their origin, software sound synthesis and software digital
audio signal processing have astonishingly evolved in
functionality and acceptance [1]. The reasons for that are various:
the impressive increase in computational power even in low price
personal computers, the great contemporary popularity of
computer generated music, and finally the migration of a
musician’s education towards the use of electronic and software
oriented tools. It is a milestone in this evolutionary process that
the new MPEG-4 Audio standard provides a toolset for Audio
synthetic generation and Audio dsp, namely Structured Audio
(SA, [2]). Moreover, SA is surrounded by a higher-level language
for scene description (BIFS, [3]), so that a complete virtual audio
environment can be described.

SA and its SAOL (Structured Audio Orchestra Language, see
[4,5]) C-like programming language are conceived for
multimedia and downloadable applications, even if they keep a
general structure very close to that of similar tools. Unlike its
predecessor CSound [6], SA has a sample-by-sample (s-b-s)
execution structure: this essentially means that syntax and
semantics of statements and operators are defined for a single
sample, not for a block of samples of length Bl

Bl = srate/krate (1)

where srate and krate are the sampling-rate and the control-rate
respectively. If this makes possible a correct implementation of
basic functions like recursive filters, on the other hand it
introduces a relevant overhead in the case of an interpreted
implementation, the most suitable for embedded real-time
engines.

We present in this paper the design of a virtual DSP
architecture based on a platform independent profiling of the
SAOL language; the DSP is able to exploit the block-based data
level parallelism contained in many audio synthesis and
processing algorithms, and to consistently reduce the
implementation overhead. In the next section it is shown how it
was possible to estimate and profile the computational
complexity of typical algorithms in a platform independent way,
and SA decoding issues are discussed; the results of the profiling
phase are used to define a virtual architecture, conceived to be
easily optimized on modern superscalar devices. In the last part
experimental results are presented that validate the proposed
approach: speed-up factors in the order of 20 are achieved for
typical algorithms by our SAINT (SA INTerpreter) decoder over
the sample-by-sample MPEG-4 reference software on
WindowsNT and Solaris platforms.

2. FUNDAMENTAL ISSUES IN SA DECODING

A systematic approach to the implementation of the SA
decoder must necessarily move from a complexity analysis of its
typical applications, which may include any kind of audio
application. Therefore it is necessary to provide suitable metrics
to profile Structured Audio as far as possible in a platform
independent and implementation independent manner, not to
loose in generality, staying at the same time close to the
Structured Audio normative text. In other words, the problem lies
in measuring, by uniform criteria, different implementations of
the SA decoder (see [4]), rather than identifying SA with a
particular implementation on a specific platform, as often done in
the past for computer music languages.

This section introduces a new method for measuring decoding
complexity of normative Structured Audio programs: this method
has been adopted in the MPEG-4 standard to define SA Levels of
complexity and for SA Conformance testing [12].

The SA standard does not specify any algorithm, but rather
the correct way to decode SAOL instructions, i.e. to execute
statements, expressions, "core opcodes" (the standard SAOL
library of Audio functions) and routings among instances of the
different instruments; it follows that the computational
complexity that corresponds to the decoding process cannot be
described either in terms of a statistical model, for instance mean
value and variance, nor in terms of a worst case/best case model.
The actual decoding complexity associated with each
performance can theoretically range from a very low value, near
to zero, to a very high one, depending on the SAOL algorithm, on
the SASL (Structured Audio Score Language) score and on the
runtime dynamic changes of the control parameters (SA, as any

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147917602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

 DAFX-2

MPEG-4 Audio-Visual Object, can be included in interactive
multimedia scenes; for more details on MPEG-4 BInary Format
for Scenes, or BIFS, see [3]). It is clear that, in such a context, it
is not possible to extract complexity estimations from an analysis
of the encoded material, but it is necessary instead to execute or
simulate the SA program. Since the implementation of a decoder
can be software- and/or hardware-based, it is important to choose
some parameters, called here all together the complexity vector, in
a way that they can be useful to profile the widest possible range
of implementations.

It will be shown later that a classical profiler, which provides
overall results for the complete decoding, is not useful and its
results are not meaningful in a real-time, time-variant and
interactive context: the complexity vector must be estimated as a
function of time. This means that the complexity vector Cv must
be calculated as a discrete function:

Cv = Cv(ti) (2)

where ti is a generic instant along the whole execution time

axis, and i is characterized by a suitable granularity.
To measure the complexity of programs encoded in SA, the

analysis of a specific performance must be carried on considering
only the number of SAOL operations and their corresponding
memory requirements, making abstraction of the unpredictable
overhead coming from a specific decoder solution. In the SA
standard some of the statements and core opcodes of SAOL are
not specified in full details but only in terms of behavioural
description (mainly when they are in relation with interpolation,
3-D and effect processing). Therefore, it is necessary to carefully
separate, relying on the normative text, what is mandatory in the
decoding process from what is left open to the implementers. In
fact, the first set of functionality corresponds to a precise
algorithm or theoretical number of operations per SAOL
instruction, while the second set can be classified only by
"macro-oriented" criteria. All the operators, statements and core
opcodes in SAOL have been grouped in classes of operations; the
most complex opcodes have often been decomposed in sequences
of a few simpler operations. Each class of operations (arithmetic,
logical, advanced mathematical operators, interpolations, and so
on) constitutes an element of the complexity vector. According to
the goal of profiling, the vector can be made longer or shorter.
Exhaustive details about this classification are described in the
MPEG-4 Conformance Test standard [12]; in this case the
complexity vector is composed by 11 elements.

2.1. Abstract profiling of Structured Audio

The principles explained above has been integrated in the
actual Structured Audio reference decoder (saolc, [13]); as
execution engine, it has an interpreter of the SAOL language and
then it well supports enhancements for a profiling along the
performance time axis.

The SA abstract profiler works as follows. Three counters are
associated to each parameter belonging to the complexity vector:
the first is reset every k-cycle (control cycle), the second every
srate samples (one decoded second in performance time), the
third always increments its value until the end of the
performance. In such a way the first counter adds the vector
parameter values over Bl samples, as defined in (1): multiplying

by krate, in order to have an operations-per-second basis, this
counter provides a profiling at a time granularity of one control
cycle; the second counter is used to store the parameters added
during the last second; the third counter gives the global number
of operations; in the case of allocated memory, the reported value
is sampled immediately before the output instant.

The necessary flexibility of the tool is simply provided by an
input matrix, composed by one line for each reconfigurable SA
feature and one column for each potential parameter of the
complexity vector. For instance, in the MPEG-4 Conformance
test the first 11 columns have entries different from zero. For
each feature, it is possible to specify how many units of each
parameter are necessary for the execution. Thanks to this flexible
mechanism, the operations necessary for each abstract operation
can easily be configured by editing the input file; in theory each
architectural solution can be approximately simulated in this way.

Experiments were conducted for a wide class of examples in
different conditions; among the considered one: synthesis using
wavetables (piano and drums), synthesis in FM, synthesis by
mixed techniques (wavetables+FM), physical modelling,
processing for a professional digital mixer stripe (shelving and
bell filters), 3-D Audio rendering algorithms (HRTF filtering,
calculation of early echoes), reverberation. These examples come
from computer music literature (for instance [7,8]), multimedia
audio literature ([1] et al.), or industry. The scores used for
simulations were always rather complex, with high degree of
polyphony (for synthesis) and many changes in control
parameters, to force different subtrees in the programs to be
executed.

40 50 60 70 80 90 100 110
0

0.5

1

1.5

2

2.5

3
x 10

6 Interpolations

Figure 1 Number of interpolations in "Claire de lune" by
C. Debussy. 110 seconds of score time are extracted from
the complete profiling. Horizontal axis is time in score
seconds; the dotted line is the mean value along the
complete decoding

A typical output for interpolations in a classic piano piece is
shown in Figure 1. It is obvious from this example that the mean
value, represented by the dotted line, is not of any importance to
guarantee real-time performances: only the most critical, worst-
case intervals must be considered. This result alone, if a good
quality interpolation is assumed, shows why the SA decoding can
result in a heavy task even for a fast CPU, and indeed the MPEG-
4 reference software in this case is far from a real-time

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

 DAFX-3

performance on a general-purpose computer. Experimental results
also show that a time granularity of 1 second is enough for a
consistent simulation and that a fast control rate is only required
to achieve acceptable reaction times to changes.

The abstract profiling of many SA programs revealed
interesting features of typical synthesis and processing
algorithms, well-known ones and more subtle ones, above all
concerning their use of the set of SAOL core opcodes.

In SAOL the standard core opcodes are 105, but a careful
analysis of them all, validated by the profiling to verify
consistency, reveals that the number of "core functions" necessary
to optimise them is much smaller, nearly the half. For instance,
the oscillators and tablereads can be reduced to two basic
operations, interpolation and phasor, i.e. increment with modulo
check; many specific conversion operators can be translated into
a longer (in terms of number of operations) combination of
simpler operations, since they are not often used; some filters
present evident redundancies, and so on. On the other hand
effects, mathematical operations, most of the filters, some signal
generators and other opcodes provide a specific functionality, and
often their algorithms are left open to implementers: as a
consequence they require a dedicated core function.

2.2. Feedback analysis in Structured Audio

A second phase of the analysis was dedicated to the study of
the possibility of a block-by-block (b-b-b) execution in SA,
without altering the output of the normative s-b-s language
specification. Efficiency of a block based execution over a sample
based one has been previously proofed in literature [8]. In SA,
what can prevent from executing b-b-b is the presence of an
explicit feedback in the SAOL code. By explicit feedback we
intend here a feedback programmed using more than one line of
code, while an implicit one is for instance the case of the iir or
flanger core opcodes, where the feedback is hidden at a lower
level. Explicit feedbacks have been detected by a simple graph
analysis only in a few situations. The most obvious is when an
audio variable is assigned to a new value after its first use. These
cases have to be detected and treated in a special way, while the
rest of the code can be executed on a possibly large b-b-b basis.
Of course, this can be done if the introduced delay in the real-
time synchronization of the complete MPEG-4 decoding process
(see [3]) is tolerable.

The two main results of subsections 2.1 and 2.2 proof,
confirming intuition, that in most cases an efficient
implementation of the SA decoder can be obtained by the design
of a multimedia device, or at least a DSP, based on a vectorial
instruction set.

3. THE SAINT VIRTUAL DSP

The SA decoder denominated SAINT aims at two main
objectives: first of all to develop an easily understandable
interpreter in the most efficient way, in order to limit the
overhead due to instruction interpretations; secondly to conceive
an instruction set that best matches the parallelism exploitable in
many state-of-the-art DSPs, processors and multimedia
processors [8,9]. Concerning this last issue, SA intrinsically
provides two possibilities for parallel computation: the first is a

parallelism at the data level, that can be exploited when it is
possible to work on vectors (blocks) of data, as previously
described; the second is a parallelism at the instruction level, but
only when different instances of the same instrument are active:
this more precisely induces a SIMD (single instruction on
multiple data) type of parallel architecture. The statistical analysis
described earlier invited to concentrate on a data level
parallelism, which is almost always present, easy to exploit and to
port on different platforms: all of the modern VLIW and SIMD
architectures permit good speed-up factors for this kind of
parallelism; the final decision was to design a virtual DSP with an
ALU able to execute the SA instructions in a vectorial form, with
a variable length of the vector, from 1 (for s-b-s execution) to N,
which is normally the length of the control cycle in samples.

Aiming at a tool very similar in its software architecture to a
hardware device, the first effort has been to divide the complete
decoding in only two layers: the compiler/scheduler layer and the
instruction layer. The main reason for that is to be able to easily
split the complete process into two separable parts, the
compiler/control task and the real processing task; once this is
accomplished, it is not difficult to run the first phase in a general
purpose processor, and to execute the intensive processing
possibly in the same CPU, but with the same effectiveness in a
separate co-processor, single or even distributed; this is achieved
through a simple sequence of method calls after a specific
resource allocation, which means allocation of the method codes
and their sequence.

In practice a transcoder is necessary from the SAOL code to
an intermediate format to be passed to the computational engine;
here the core opcodes are possibly translated in the appropriate
short sequence of macroinstructions and then interpreted by the
execution unit. While doing that, the SAOL compiler is also able
to break all the nested calls, theoretically infinite in the number of
allowed levels; the returned values are stored in intermediate
registers according to their rate; this also permits to avoid waste
of time in useless evaluation functions when the actual parameter
rate is lower than allowed by the opcode definition. On one hand,
the core opcode decomposition and the creation of intermediate
registers permit to flatten the block of code and to split it properly
into three blocks. On the other hand it introduces an additional
number of instructions to execute; this is experimentally proved
as not being too heavy if virtual methods for code interpretation
are properly designed: see next section for experimental results.

The generated block of code, for an instrument or a user-
defined opcode, is additionally split into three different blocks,
according to the rate of the statements to be executed
(initialisation, control and audio or sampling rate).

After the code decomposition, the block of code at the audio
rate is checked for explicit feedbacks; the actual compiler gives
the possibility to label a certain number of contiguous lines as s-
b-s executed in such a fashion, after and before two blocks
executed by vectors, i.e. b-b-b.

In the following of this section the two main features of the
architecture of the SAINT virtual DSP will be introduced, namely
its memory structures and the instruction set.

3.1. Memory Structures

There are two main groups of memory structures, relating
respectively to the Instrument and its Instances. The Instrument

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

 DAFX-4

memory contains first the Instruction Memory (IM), i.e. the space
allocated to contain the several instructions for both the
instruments and the related user defined opcodes. Opcodes, either
core or user defined, are expanded inline into the main block,
except in the case of oparray (an array of "processing cells"),
when a static and self-standing "opcode space" is required for
each element of the array. Besides instructions, the Instrument
memory also contains registers; there are two main types of
register: general-purpose registers that contain intermediate
calculations from expressions, and specific registers, which
mainly contain SA global standard variables plus some
architecture-specific variables used for code processing: the PC,
start, end and the block size (for block processing), ret_address
(to return from subblocks). The Instance memory space contains:
memory space for local variables, memory space for actual
parameter lists, local standard names, allocated space for buffers
and delay lines in filters and memory-related opcodes. In SAINT,
the memory structures for the instance are visible to the
instrument block through indirect addressing, and the switching
among the possible several active instances is done by changing
the content of the base address.

3.2. The virtual DSP Instruction Set

The instruction set of the SAINT virtual DSP is composed by two
main groups: macroinstructions and instructions. The former
constitute the core of the SAINT processing; they represent the
instruction set that is directly executed by the ALU of the
machine. All of them are defined in vectorial form, where the
block of data on which the instruction is executed is defined by
the value of the special registers start and end. Unlike in the case
of e.g. the Java machine [14], in SAINT there is no stack to work
on, all the instructions directly operate on memory locations, and
then they are defined with (normally) two or three addresses
where to load and store data. For instance:

madd x,y,z;

adds the two vectors y and z and stores the result in x;

mmin s,t,u;

calculates the value-per-value minimum of the t vectors
referenced starting from u and stores the result in s; and so on.
Macroinstructions are conceived to behave similarly to Java
native methods, and then optimized blocks of native code for the
real hardware can be loaded to execute the SAOL code.

A first group of the virtual DSP macroinstruction set is
composed by the SAOL set of expression operators and
statements, with the exception of while, which is replaced by an
if/jump_back.

The core opcodes constitute the part of SA in which the
majority of the computation is usually executed. Indeed, they
constitute a heterogeneous set of functionality, and they describe
very frequent and demanding operations as well as rarely used
and specific ones. As it was for the MPEG-4 complexity analysis,
the objective is to isolate the computationally more complex and
frequent routines to give them an entry in the instruction set. For
instance, many of the mathematical methods are important and

used intensively, but some of them are seldom used and can be
decomposed in one or a few lines.

For instance, an interesting example of redundancy is given
by table operations: tableread, tablewrite and oscillators, which
constitute the core of a majority of musical and processing
algorithms (among others wavetables and FM, i.e. the most
popular synthesis methods), are based on two main operations,
interpolation and modulo increment of the phase, other than the
unavoidable memory accesses and scalings. Considering, as an
example, the case of the doscil core opcode, which loops once
over a wavetable, the functionality is decomposed as shown in
Figure 2:

Figure 2 Decomposition in SAINT bytecode of the SAOL
doscil core opcode. Lines in italic are executed at srate,
lines in normal font are executed at the init rate.

Three vectorial operations, at third, fifth and sixth line are
executed every control cycle for a block of e.g. 100 samples. The
other oscillators and tableread are implemented in a similar way.

The general criteria adopted to define a new instruction in the
set were first of all the statistical results of the profiling phase,
then the normative text and the implicit feedback loops: in fact, it
is not wise to break them into explicit ones. The last two issues
force, in a certain sense, to keep some complex macroinstructions
in the set. This is not a great problem in software, while in a
hypothetical hardware implementation some aspects still need to
be further investigated. In the end, 53 macroinstructions are
enough to represent all the opcodes. Considering statements and
operators, in the current definition the macroinstruction set for
the virtual ALU (arithmetic-logic unit) is composed of about 70
elements. Different macroinstructions for different rates are not
needed since the vector length is flexible.

To understand the role of the few instructions it is better to
analyse, as an example, the execution of an instrument’s control
cycle. The block of code at the control rate is first executed; of
course, the macroinstructions are used in scalar mode (vector size
is 1). If the block at srate is executable completely b-b-b, this
second group of instructions is executed in sequence like the
previous one, except that now vector size is not one. Otherwise it
is necessary to execute in s-b-s some parts of code: instructions
p_set, p_inc, p_jump, p_return are used to manage special
registers like start and end to execute the block of code, as shown

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

 DAFX-5

in Figure 3. Other instructions are used to access global variables,
and in general for communication with the scheduler. This latter,
in the proposed architecture, is nothing else than a "hardwired"
master DSP able to coordinate the complete real-time process.

Figure 3 Example of the SAINT virtual DSP block of
code: execution of a control cycle of an instrument. The
prefix "p_" is used to differentiate instructions from
macroinstructions.

4. EXPERIMENTAL RESULTS

The virtual DSP architecture described in the previous sections
has been implemented in C (compiler) and C++ (execution unit).
Several measurements on different versions of the decoder have
been conducted. The SAINT tool has been compiled on two
different platforms, an Intel Pentium II at 400 MHz with 128 MB
of RAM running Windows NT4, and a Sun UltraSPARC 2 at 360
MHz with 256 MB of RAM running SunOS 5.6. The decoder
was compiled on SUN using the default SunOS cc/CC compiler,
while the PC version was compiled using BorlandC++ 5.02;
optimization for speed was introduced. Many different groups of
simulations have been conducted, taking as a result the decoding
time elapsed until the end of the performance.

The first example that we report here is a common wavetable
synthesis algorithm, where a stereo piano at 44100 Hz is
generated from monophonic wavetables, and filtered by a
reverberation based on a classic scheme with two allpass and four
comb filters [1]. The mean polyphony of the score file,
considering the effect of sustain, is approximately 3.5, the score
duration is 18.5 seconds. The decoding times for the PC platform
are shown in Figure 4. In the graphic, the six columns from right
to left are respectively associated to: 1) the reference software as
of DIS (draft international standard) version; 2) the SAINT
decoder without any optimization; 3) the SAINT decoder with a
b-b-b execution, when possible; 4) the previous decoder with the
flattened structure and intermediate registers; 5) for the PC
platform, the SAINT decoder with the "Optivec" free
downloadable vectorial libraries for Pentium; 6) the duration of
the complete score file.

The chosen interpolation factor is 3: for this, C++ code is
based on harmonic functions, while the vectorial libraries use
spline interpolation. The SAINT decoder without any
optimization apparently works more than twice faster than the
reference software. This huge gain comes first of all from a better
instruction and data management, since all variables and memory

spaces are addressed directly by pointers inside instruction
"objects" themselves; secondly there is a more efficient
interpolation function (based on McLaurin series), which in this
example is the predominant operation. The b-b-b execution
introduces a speed-up factor of nearly 3, here with a block length
of 441. When the block of code is flattened, without nested calls,
performances do not vary relevantly: this is a good result, because
it permits to simplify the execution without penalty in speed, even
if the total amount of functions calls has increased. Finally, the
introduction of vectorial libraries on some basic functions (in this
case only for interpolation, mathematical operators and summing
bus) shows how this approach can be effective: consider in fact
that parallelism is exploited here only at the software level, while
the vectorial instruction set can be optimized with a much greater
efficiency on a truly parallel co-processor.

Wavetable Piano

18.5
5.8

11.612.4

45.5

110.5

0

20

40

60

80

100

120

1 2 3 4 5 6

Figure 4. Experimental results for different decoding
approaches: I. Y-axis is time in seconds. The values of the
six columns from left to right are the decoding time for: 1)
the MPEG-4 SA reference software; 2) the SAINT decoder
without any optimization; 3) the SAINT decoder with a
block-by-block execution, when possible; 4) the previous
decoder with the flattened structure for interpretation; 5)
the SAINT decoder with the "Optivec" free downloadable
vectorial libraries for Pentium; 6) the duration of the
complete score file

A second synthesis example is an FM-generated brass with
wavetable-generated attack (nearly 1 second); the frequency
modulation part of the algorithm is based on the oscil core
opcode (oscillator over a table that does not have its own base
frequency), in a way very similar to examples tested in literature
[11]; the orchestra contains a reverberation effect
computationally similar to that used for the wavetable piano.
Experimental results are reported in Figure 5. It is noticeable that
in this example, always stereo at 44100 Hz, even the SAINT
decoder with vectorial libraries does not overpass too much the
necessary speed for a real-time performance. In particular, for
interpolation the factor is always 3. In this case, the profiler
shows that, in one second of score, peaks are present of 7x105
interpolations, more than 3.5*106 multiplications and 3x106
mathematical methods, without considering tests and other
floating-point operations. Due to this purely mathematical
content, the gain with vectorial libraries is impressive.

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

 DAFX-6

FM + Wavetable Brass

3.42.3

10.111.1

17.8

48.4

0

10

20

30

40

50

60

1 2 3 4 5 6

Figure 5 Experimental results for different decoding
approaches: II. Y-axis is time in seconds. The values of
the six columns from left to right are the same of Figure 2.

The physical bass example implements a waveguide synthesis

model at 44100 Hz. The algorithm makes heavy use of the lopass,
allpass, and tableread opcodes, other than mathematical ones, and
is characterized by an s-b-s subblock between two vectorial
blocks. The results for a short monophonic score without any
additional processing are reported in Figure 6. It is noticeable
that, since interpolation is no more predominant, the gain over the
reference software is reduced to a factor lower than 2 and that the
presence of an important s-b-s block of code again reduces the
speed-up factor due to b-b-b processing. Moreover, the vectorial
libraries do not contain the appropriate functions and we were not
able to produce meaningful results for this case.

Waveguide Physical Bass

3.9

7.27.28.8

18.6

33.7

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6

Figure 6 Experimental results for different decoding
approaches: III. Y-axis is time in seconds. The values of
the six columns from left to right are the same of Figure 2.

5. CONCLUSION

We have shown in this paper how the MPEG-4 SA decoding
process has been analysed in a platform independent way and
how the proposed method has been used for the MPEG-4
standardization process. Afterwards the design of a virtual DSP
architecture has been presented, based on the results of the

complexity analysis; this architecture can exploit the data level
parallelism contained in many audio algorithms. Experimental
results prove the effectiveness of the approach and its suitability
for implementations on modern superscalar DSPs and multimedia
processors. Future work will be dedicated to the final
specification of the scheduler and to allow several virtual DSP to
work in parallel under its control. This will permit to build a
system able to exploit further degrees of parallelism.

6. REFERENCES

[1] Roads, C., 1996. "The Computer Music Tutorial".
Cambridge, MA: MIT Press.

[2] ISO/IEC JTC1/SC29/WG11 (MPEG98) document N2503-
sub5. "Information Technology - Coding of Audio-Visual
objects. Part 3: Audio. Subpart 5: Structured Audio". MPEG-
4 Audio International Standard.

[3] Scheirer, E., J. Huopaniemi and R. Väänänen "AudioBIFS:
The MPEG-4 Standard for Effects Processing." Proc.
DAFX98 Workshop on Digital Audio Effects, Barcelona,
Nov. 1998

[4] Scheirer, E.: "SAOL: the MPEG-4 Structured Audio
Orchestra Language". In Proceedings of the International
Computer Music Conference. Ann Arbor, MI, October 1998.

[5] Scheirer E.D., B. L. Vercoe: "SAOL: The MPEG-4
Structured Audio Orchestra Language." Computer Music
Journal 23 (2) : 23-35, 1999.

[6] B. Vercoe: "CSound: a Manual for the Audio Processing
System". Cambridge, MA: MIT Media Laboratory, 1993

[7] Zoia, G. "A method for Complexity Measurements in
Structured Audio". ISO/IEC JTC1/SC29/WG11 (MPEG98)
document M3602, Dublin - July 1998.

[8] Dannenberg, R. B., N. Thompson: "Real-Time Software
Synthesis on Superscalar Architectures". Computer Music
Journal 21 (3) : 83-94, 1997.

[9] Espasa R., M. Valero: "Exploiting Instruction- and Data-
Level Parallelism". IEEE Micro, September - October 1997 :
20-27.

[10] Flynn, M. J.: "Computer Architecture: Pipelined and Parallel
Processor Design". Sudbury, MA: Jones and Bartlett
Publishers, 1995.

[11] Pope, S. T.: "Machine Tongues XV: Three Packages for
Software Sound Synthesis". Computer Music Journal 17 (2):
pag. 23-54. MIT Press, 1993.

[12] ISO/IEC JTC1/SC29/WG11 (MPEG99) document N3067-
sub3. "Information Technology - Coding of Audio-Visual
objects. Part 4: Conformance. Subpart 3: Audio
Conformance". MPEG-4 Audio International Standard.

[13] MIT Media Laboratory - MPEG-4 SA Homepage -
http://sound.media.mit.edu/mpeg4

[14] Lindholm T. and F. Yellin "The JAVA Virtual Machine
Specification". 2nd Edition (JAVA series), Addison Wesley,
1999.

