
An MPEG-oriented platform for Wave Field Synthesis arrays of loudspeakers

Giorgio Zoia, and Claudio Alberti
Integrated Systems Laboratory, EPFL

Lausanne, CH-1015, Switzerland

The MPEG-4 standard provides a complete framework for hybrid coding of natural and structured sound
information that permits the description of complete spatial environments by a low amount of data. A new platform,
based on a virtual DSP, has been developed to optimize the MPEG decoding and pre-processing interface to feed an
array of loudspeakers rendering spatial Audio by Wave Field Synthesis. The virtual DSP has an instruction set
adapted to MPEG-4 advanced audio features on superscalar processors.

WAVE FIELD SYNTHESIS AND MPEG-4
In the late eighties a fundamentally new approach to
multichannel sound rendering was proposed, namely
Wave Field Synthesis (WFS) [1]. With this new
approach, wave theory plays a fundamental role and
individual loudspeakers are replaced by arrays of
loudspeakers that generate wave fronts from true or
notional sources [2]. Unlike almost all the other
existing methods, the wave front solution can be
called a volume solution, i.e. it generates an accurate
and more realistic representation of the original wave
field in the entire listening space.

In the ideal case, the listening area is surrounded by
planes of loudspeakers, which are fed with signals so
that they produce a volume flux proportional to the
normal component of the original sound field at the
corresponding position [3]. For more practical
purposes, the method has been adapted to make use
of linear arrays of loudspeakers, which surround the
listening area, in substitution of the planes of
loudspeakers [3],[4].

Despite of this remarkable simplification, the WFS
approach is still characterized by a huge number of
output channels (typically more than 100), necessary
to generate the sound field. This makes the storage
and/or transmission of data, uncompressed or even
coded, an important problem to be solved. In this
context, it is fundamental to be able to deal with the
sound in terms of a mixed recorded/structured
description [5]; as a consequence, a considerable
amount of processing power is required in the
rendering device terminal to reconstruct a recorded
(or even synthetic) acoustic environment starting
from dry, monophonic sources.

Current implementations of spatial rendering
schemes are based on synthetic models of room
impulse responses, containing delay lines for the
simulation of early reflections, plus a module for the
generation of a diffused late reverberation. The

model-based approach can also be applied to Wave
Field Synthesis [4]; the main advantage of a model-
based system is scalability, i.e. the complexity of the
model can be scaled according to the available
processing power; moreover, in a virtual reality
interactive context, the parameters can be
recalculated with moderate processing cost when
source positions are changed in real-time.

On the other hand, in a data-based scheme each
source signal is convoluted with long FIR filters, as
many filters as the number of channels of the
speakers array [6]. The FIR filter coefficients are
directly computed from measured or simulated room
impulse responses. A very high degree of realism can
be achieved, if, for example, the environment that
should be reproduced is measured by a suitable
microphone array [7].

At this point, it is important to investigate the
availability of a standardized audio description
format, able to support and encode in an appropriate
way the information required by a WFS-based
system.

Advanced Audio Functionality in MPEG-4
The new MPEG-4 Audio standard provides two
toolsets to code advanced multimedia-oriented audio
content, namely Structured Audio (SA) and BInary
Format for Scenes (BIFS).

SA derives from academic research in software sound
synthesis (SWSS) languages [8]; the SAOL
(Structured Audio Orchestra Language, see [9])
programming language is similar to many of these
SWSS tools, but the SA toolset as a whole has been
conceived for multimedia and downloadable
applications; the syntax of the language itself has
become very close to that of the C language, with
stronger object-oriented connotations and several
stream-oriented extensions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147917686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ZOIA AND ALBERTI MPEG-ORIENTED PLATFORM FOR WFS

AES 19TH INTERNATIONAL CONFERENCE 2

SAOL maintains the typical execution scheme of its
predecessors, with an internal scheduler (the fixed
"main" of the program) and the possibility to define,
in its synthesis and processing functions, variables
with different execution rates: initialization, control
and audio rate. But unlike other similar tools,
characterized by a block-based syntax, SA has a
sample-by-sample (s-b-s) execution structure: this
means that syntax and semantics of statements and
operators are defined for a single sample and not for
a block of samples of length Bl

Bl = srate/krate (1)

where srate and krate are the sampling rate and the
control rate respectively. If this makes possible a
correct implementation of basic functions like
recursive filters, on the other hand it introduces a
relevant overhead in the case of an interpreted
implementation of the language decoder, the most
suitable for embedded real-time engines. Note that a
structured audio coding scheme can be seen as a
general coding approach [10]; in these terms,
decoding is used as a synonym of program execution.

In MPEG-4, SA is surrounded at the system layer by
a mark-up language for scene description, BIFS; it is
a language very similar in its hierarchical structure to
VRML, but with an innovative audio-specific subtree
called AudioBIFS [10]; functionality of AudioBIFS
nodes ranges from simple mixing or delay until
advanced spatialization schemes based on
geometrical and perceptual information, so that a
complete virtual audio environment can be described.
Custom processing algorithms, described by means
of specific SAOL code, can be inserted in the scene
tree through the AudioFX node, making of
AudioBIFS an extremely powerful and flexible
environment. An example of an AudioBIFS subtree
is represented in Figure 1.

MPEG-4 for Wave Field Synthesis
In several ways MPEG-4 AudioBIFS corresponds to
the requirements of the powerful WFS system, since
it allows to code most of the necessary information in
a high-level, structured format. As already remarked
earlier, this permits to avoid waste of bandwidth or
storage space but, of course, it implies a more
demanding effort at the decoder side, where the
rendering device needs to compute the several audio
channels using one of the two models presented
above.

Once the dry monophonic sources are properly coded
by high-quality tools also provided in MPEG-4, there
are two possibilities to code by the AudioBIFS
format the high-level side information for WFS,
corresponding to each one of the two approaches. In
a first way, that is suitable for the more realistic data-
based approach, it is possible to transmit the whole
data, FIR coefficients or room responses, once over
the channel; this can be done for instance including
responses as tables of an SA object. Once forwarded
to the filters, these data can be deleted from the
decoder memory by MPEG-4 stream commands and
only coded monophonic sources are further received.

Otherwise data can be computed out of the existing
geometric or perceptual environmental descriptions
that are supplied by MPEG-4 AudioBIFS (this
method is suitable for the model-based approach, and
it also needs to be implemented to guarantee
compliance with the standard). Aiming at a practical
system implementation, the data-based approach is
more convenient for the several reasons explained in
[6]; in this case the BIFS interpreter must pre-process
the control information and supply to the WFS
devices the same type of information that is made
available by the data-based approach.

Figure 1 Example of Audio subtree in MPEG-4

$XGLR6RXUFH

��N+=

$XGLR6RXUFH

���N+=

$XGLR6RXUFH

���N+=

$XGLR'HOD\

$XGLR'HOD\

$XGLR0L[

$XGLR);

6RXQG

$XGLR6RXUFH

��N+=

$XGLR6RXUFH

���N+=

$XGLR6RXUFH

���N+=

$XGLR'HOD\

$XGLR'HOD\

$XGLR0L[

$XGLR);

6RXQG

ZOIA AND ALBERTI MPEG-ORIENTED PLATFORM FOR WFS

AES 19TH INTERNATIONAL CONFERENCE 3

AN MPEG-ORIENTED VIRTUAL DSP
The SAINT (for Structured Audio INTerpreter) SA
decoder finds its foundation in a systematic approach
to the estimation of the SA decoding complexity,
which must necessarily move from a time-dependent
analysis and profiling of its typical applications. A
new abstract method for measuring decoding
complexity of MPEG-4 Structured Audio programs
has been developed [12] that provides platform
independent metrics and that permits to carefully
profile the execution of a program in function of
time; in this way it is possible to characterize critical
situations and to define a subset of the SAOL
standard core library that is candidate for stronger
optimization [13].

Feedback analysis
In parallel with the analysis of complexity, a second
fundamental decoding issue has been considered: the
possibility of a block-by-block (b-b-b) execution for
SA, without altering the output of the normative s-b-s
language specification.

Efficiency of a block-based execution over a sample
based one has been previously proofed in literature
[14]. In SA, what can prevent from executing b-b-b is
the presence of an explicit feedback in the SAOL
code. By explicit feedback it is intended here a
feedback programmed using more than one line of
code, while an implicit one is for instance the case of
the iir library function, where the feedback is hidden
at a lower level, visible by the interpreter but not by
the programmer. Explicit feedbacks have been
detected by a simple graph analysis only in a few
situations. The most obvious is when a new value is
assigned to an audio variable after its first use. These
cases have to be detected and treated in a special
way, while the rest of the code can be executed on a
possibly large b-b-b basis, typically with a block
length of Bl as defined in (1). Of course, this can be
done until the latency introduced by the block
processing in the real-time synchronization of the
complete MPEG-4 decoding process is tolerable.

The virtual DSP architecture
Combined analyses of complexity and feedback
demonstrated that in most cases an efficient
implementation of the SA decoder can be obtained by
the design of an extended multimedia DSP, based on
a vectorial instruction set [13]. Many multimedia-
oriented superscalar devices are nowadays available,
and some of them specifically designed to support
multichannel and spatial sound processing. This is
the main reason behind the choice to design a virtual
device with an instruction set that well matches the

parallelism exploitable in these state-of-the-art DSPs
and processors [15].

With the SAINT approach, the entire decoding is
split between two independent layers: the
decoder/compiler layer and the instruction layer. The
complete process is divided into two separable parts,
the initialization task (related to the structured
description of sound) and the processing task; in this
way, it is not difficult to run the first phase on a
general purpose processor, and to execute the
intensive processing possibly in the same CPU, but
with the same effectiveness in a separate co-
processor, single or even distributed. This structure is
conceived to target embedded solutions for
standalone devices, typical in the case of high-quality
multichannel Audio systems. In fact, they usually
contain custom solutions based on superscalar
processors and DSPs.

The SAOL compiler, entirely written in C for
portability, is completed by a post-processor that
optimizes some parts of the code and performs the
feedback detection analysis over the potential cases.

The virtual DSP engine
The instruction set of the SAINT virtual DSP is
essentially composed by macroinstructions, so called
because they are conceived to operate on vectors of
samples. These macroinstructions are the methods
that are directly executed by the arithmetic unit
(ALU) of the machine. All of them are defined in
vectorial form, where the block of data on which the
instruction is executed is defined by the values of two
special registers in the machine, start and end. In
SAINT there is no memory stack to work on, all the
instructions directly operate on memory locations,
and then they are defined with two or three addresses
to load data and store results.

The scheduler works in close conjunction with the
ALU of the DSP, and then it must run on the same
device where the code is being executed, to avoid
useless communication delays between the two units.
In fact, the scheduler can be seen as a master DSP
unit working together with the processing DSP and
executing a fixed, "hardwired" program of control
and data post processing.

The virtual DSP architecture has been tested by
several measurements with different versions of the
decoder. Experiments on performance have shown an
improvement of approximately a factor 20 in speed
over the MPEG-4 reference software and a slowdown
of 20-30% in comparison with a cross-compiled
SAOL-to-C decoder [13].

ZOIA AND ALBERTI MPEG-ORIENTED PLATFORM FOR WFS

AES 19TH INTERNATIONAL CONFERENCE 4

JOINING MPEG-4 AND WAVE FIELD
SYNTHESIS TOGETHER
An architecture and an instruction set conceived and
optimized only for Structured Audio reveal several
limitations when the device must be used for more
general multimedia-oriented applications. Even if
SAOL can potentially be used to describe any kind of
algorithm, being a programming language and then a
general audio coding scheme [10], many fundamental
features of typical advanced audio applications, such
as synthetic reverberation for multichannel audio,
cannot be described with the necessary effectiveness.
Moving from the purpose of extending the MPEG-4
decoder to a complete AudioBIFS subtree processor,
several extensions have been included in SAINT to
support at best functionality of the BIFS language
and to approach the requirements to interface the
WFS final rendering stage.

Extensions for Virtual Audio Scenes
The implementation of the complete AudioBIFS
subtree requires the solution of non-trivial
implementation challenges, first of all the correct
synchronization between the Structured Audio built-
in scheduler, which is active to process the AudioFX
nodes, and the BIFS scene scheduler. An evaluation
of practical implementation issues suggests that an
efficient solution can be the integration of the
complete audio subtree into an extended orchestra
(the collection of functions to run an SA program),
where all the nodes are transformed into SAOL
algorithms and linked to the input/output buffers of
the eventual AudioFX nodes in the correct sequence.
It was then decided to "cross-compile" the
AudioBIFS subtree to a sequence of extended SAOL
functions and to proceed then to the execution of the
complete audio scene using the SA scheduler as the
master mechanism for synchronization.

We mentioned earlier the necessity to extend the
SAOL functionality; these extensions are necessary
on both the instruction set and the memory
management of the virtual DSP, to deal essentially
with the more interactive nature of BIFS.

In SAOL the several instruments (i.e. the synthesis or
processing functions) are statically defined at the
beginning of the decoding process, when the
bitstream header is received, and so are the routings
among them; routings define the relationships among
the input and output buffers of the different
instruments. Only new instances of an existing
instrument can be transmitted by streaming
information.

In BIFS this is not enough anymore, because routings
among the nodes are dynamic and new nodes can be
instantiated in the middle of the scene representation,
when new commands are received via the bitstream.
Since in the proposed system the interaction between
the parser/compiler and the execution engine is kept
as far as possible separate, the virtual DSP must be
made able to process streaming commands dealing
with dynamic configurations of the input/output
buffers, and above all with creation of new
instruments. For instance, a new mixing AudioMix
node could be instantiated, with a mixing matrix
processing four inputs to produce two outputs, linked
with sources and to target post-processing nodes.

A second class of extensions is necessary to support
functionality provided by the more advanced nodes
of BIFS. If some functions like mixers, delay lines
and switchers are not difficult to translate into SAOL,
on the other hand AudioBIFS is suitable for a
multichannel WFS rendering system because it
provides the possibility to spatialize monophonic
sources using schemes such as room modeling or
perceptual parameters. It is evident that in such cases
some dedicated instructions are necessary to limit the
overhead of the interpreted decoder to a minimum
and to better optimize the transcoding into the
intermediate format.

Finally, BIFS allows the presence of nodes working
at different sampling rates, and lower rates must be
converted to the higher ones at the most advanced
point in the processing tree [16]. This is not possible
in standard SAOL, where all the instruments must
work at the same audio rate. It is then necessary to
extend the scheduler with the capability to treat
different subgroups of instruments (i.e. different
orchestras) that are sequenced through asynchronous
sampling-rate converters at the correct point.

ThreeDSPACE: MPEG-4 driving Wave Field
Synthesis
The concept and design of SAINT and of its extended
BIFS version are inserted in the framework of
ThreeDSPACE. ThreeDSPACE is a mixed
academic/industrial research project aiming at
implementing advanced 3-D audio processing by
Wave Field Synthesis. In it, SAINT is used as signal
generator and preprocessor, producing the signals and
required side controls as described in the first section.
The composition of the AudioBIFS scene is not
completed by the virtual DSP itself. Instead,
monophonic audio sources and side information for
spatial control are sent to the output of a first
processing stage, and another active stage driving
loudspeaker stripes is in charge to produce the

ZOIA AND ALBERTI MPEG-ORIENTED PLATFORM FOR WFS

AES 19TH INTERNATIONAL CONFERENCE 5

necessary number of channels (up to 64 per stripe) in
order to generate the holophonic sound field. The
overall system architecture and related data flow used
in ThreeDSPACE is represented in Figure 2.

Figure 2 The data flow through the ThreeDSPACE audio
framework. Mono channels and control information are
processed by active arrays of loudspeakers to produce
suitable WFS multiple channels

The entire system can be split into three main stages.
The first one, dealing with the parsing and
compilation of the MPEG-4 bitstream, has been
implemented on a general purpose CPU platform.
The second stage supports the virtual DSP and has
been ported on a TriMedia multimedia DSP, a V-
LIW (Very Long Instruction Word) architecture. In
the first version of the system, this processor runs at
100MHz; its V-LIW instruction set allows up to five
simultaneous operations to be issued. The proposed
block-by-block approach shows its potential
exploiting this feature, reaching average values of 4.5
processing units busy per clock cycle, as it will be
shown in more details in the last section. The
aggressive exploitation of parallel features lets the
virtual DSP run at a speed greater than the one
obtained on a 200MHz general purpose Pentium
CPU, with output audio formatting in addition.

Monophonic output channels are sent in ADAT
format to the last processing stage, where
convolutions are executed to implement the data-
based approach to Wave Field Synthesis. A detailed
description of this last stage can be found in [6]. A
single ADAT link is used; seven monophonic sources
at 48 kHz can theoretically be carried on the first
seven channels, while the eighth channel is dedicated
to control information, which is transmitted
according to a synchronous specific protocol. A
graphical representation of this link is reproduced in
Figure 3.

Figure 3 Block-diagram of the ThreeDSPACE rendering system. A one-directional optical link is enough to guarantee the
necessary information flow from the BIFSAINT execution engine to the active arrays of loudspeakers.

ZOIA AND ALBERTI MPEG-ORIENTED PLATFORM FOR WFS

AES 19TH INTERNATIONAL CONFERENCE 6

PORTING SAINT ON A VLIW ARCHITECTURE
One of the fundamental issues on which the whole
SAINT architecture has been conceived is the
possibility to implement and optimize it at a
reasonable cost on superscalar DSP architectures,
with the concrete possibility to actually exploit the
parallelism and the eventual advanced audio support
they provide. The porting of the SAINT virtual DSP
to the VLIW TriMedia processor has represented an
important test bench for the SAINT concept and for
the ThreeDSPACE system as a whole.

The heart of TriMedia is its 32-bit DSPCPU core.
The DSPCPU implements a 32-bit address space and
128 general-purpose 32-bit registers. The registers
are not separated into banks; any operation can use
any register for any operand. The core implements a
VLIW architecture that provides up to five
simultaneous operations to be issued. These
operations can target any 5 of the 27 functional units
in the DSPCPU. These units include integer and
floating-point arithmetic units and data-parallel DSP-
like units. SIMD (Single Instruction Multiple Data)
operations are possible on 8-bit or 16-bit integer data.
Being the floating-point format the standard required
MPEG-4 SA format, this SIMD add-on and five
integer units have little impact on the considered
application. Two different caches are also present: 32
kB for instructions and 16 kB for data.

Code Optimization
Assembly language for the VLIW instruction set is
too complicate to be well managed by humans and
then it is understandable how fundamental is a robust
and optimized compiler.

Given the architecture of SAINT, it makes sense to
try first of all to optimize the implementation of the
vectorial instruction set, being the scheduler a
separate and low cost task, which moreover does not
offer many indications for a data-level parallelism. It
is interesting indeed to report the work of
optimization of the vectorial instruction set; this task
corresponds to the implementation of a vectorial DSP
library for the VLIW CPU, and it is of general
interest for many kind of parallel DSP processing,
including of course channel generations for WFS.

Compilers for superscalar architectures normally
provide some dedicated optimization facilities
intended to better exploit the parallelism of the
specific device. Often these techniques come with
some practical examples that can be useful to
produce code more suitable for aggressive
parallelization [17]. At the same time programmers
know techniques that can be used to reduce overhead

in a code, like for instance loop unrolling or
manipulation of pointers.

Together with all these potential optimization
techniques, special pointers can be declared, called
restricted pointers; it is interesting to spend some
words on them, since experimental results reveal how
only their use can produce real parallel execution. At
the compilation time, the compiler does not know if a
pointer to an allocated memory area is overlapped
with another pointer possibly accessing the same data
to modify them in a read/write process. That is to say,
the compiler normally assumes that two pointers may
refer to the same or overlapping memory locations,
i.e. be aliased to each other. This implies that
operations of two different statements having those
pointers as operands cannot be executed in parallel.
However, if it is known that all the pointers point to
distinct memory areas and thus never alias, it is
possible to convey this information to the compiler
by declaring these pointers as restricted. Based on
this information, the compiler decides that different
variables and/or restricted pointers do not alias. It is a
programmer’s responsibility to verify that the
assertion is true; proper use of restricted pointers
reduces the amount of dependencies and, therefore,
increases dramatically potential parallelism (see
experimental results later).

In the case of SAINT, and its BIFS extension in
general, the vectorial macroinstruction intrinsically
contains the certainty that memory areas are not
overlapped. In fact, detection of feedback is
performed by the SAOL compiler before execution of
the bytecode, and then potential overlappings are
already eliminated and relating instructions treated as
sample-by-sample (that again avoid overlapping by
making the virtual DSP work on one sample at a
time). Concerning instead the cross-compilation of
AudioBIFS to SAOL, thing that is more specifically
used with WFS to pre-process structured information
and generate driving controls, the resulting SAOL
code is statically optimized in advance and some
reconfigurable templates are used, thing that again
assures the presence of a one-directional data flow
inside the node processing.

Experimental Results
In this subsection experimental results are reported
that show how the vectorial instruction-set matches
the parallel potential of the V-LIW processor and the
multichannel pre-processing can greatly benefit from
this particular structure. Results are shown in Figure
4 and Figure 5 for a 4th order IIR filter; given the
structure of the code, these results do not change
meaningfully for an 8th order FIR filter. In

ZOIA AND ALBERTI MPEG-ORIENTED PLATFORM FOR WFS

AES 19TH INTERNATIONAL CONFERENCE 7

ThreeDSPACE convolutions are performed in the
last processing stage, and then on a different
platform, but this benchmark is anyway meaningful
as it represents a large class of operations that are

normally executed during the BIFS subtree
processing. Moreover, it also shows how the last
WFS stage could also benefit from such architecture.

Figure 4 Performance of the FIR/IIR filter on a large block of samples for different levels of optimization

Figure 5 Instruction Level Parallelism (ILP) of the FIR/IIR filter on a large block of samples for different levels of optimization

����������	��
����

�

�

��

��

��

��

RSW��� RSW��� RSW��� RSW��� RSW��� RSW��� RSW��� RSW���

2SWLPL]DWLRQ�QXPEHU

1
X
P
E
H
U
�
R
I
�
F
\
F
O
H
V
�
�
L
Q
�
P
L
O
O
L
R
Q
V
�

1XPEHU�RI
F\FOHV

7KHRUHWLFDO
PLQLPXP

���������������������������

��������

��������

���� ����

����

����

����

����

����

����

����

����

����

����

����

����

����

RSW��� RSW��� RSW��� RSW��� RSW��� RSW��� RSW��� RSW���

�����������	
	����

,QVWUXFWLRQ
/HYHO
3DUDOOHOLVP

ZOIA AND ALBERTI MPEG-ORIENTED PLATFORM FOR WFS

AES 19TH INTERNATIONAL CONFERENCE 8

The experiments were made on a large block of
samples, to isolate real computation and reduce
potential overhead coming from too many cache
memory refreshes. The vertical axis in Figure 4
represents the million of cycles to filter 2*105
samples, while the horizontal axis reports the
described methods of optimization in the following
order:

Opt.1 Profile-Drivel compilation
Opt 2 Decision-tree grafting
Opt 3 Loop optimization
Opt 4 Loop optimization: local reference parameters
Opt 5 Loop fusion
Opt 6 Manual Loop unrolling
Opt 7 Manipulation of pointers
Opt 8 Restricted pointers

The first four types of optimization are automatically
inserted by the superscalar compiler, while
optimizations from 5 to 7 are well known to parallel
programmers [18]. Optimization 8 has been
extensively described above. In the two Figures, 4
and 5, optimizations are cumulated, i.e. in column 2
optimizations 1 and 2 are used and so on. The
theoretical minimum in Figure 4 is calculated in a
conservative way, counting only multiplications and
additions; considering that the TriMedia cannot
allocate the five slots to floating-point operations, it
is supposed that at the same time necessary loads and
stores can be performed. A theoretical minimum is
often difficult to estimate on a parallel architecture
and then this comparison must be taken as a not too
strict reference, with some margin of error.

On the other side the values reported in Figure 5 are
objective, since the vertical axis represents the
calculated Instruction Level Parallelism (ILP), which
for the considered device has a precise upper limit of
5 (no more than five execution slots can be allocated
per cycle). In this case the open issue could be if all
the operations executed in parallel are necessary or
not, but the theoretical limit is precise. Given these
two groups of measurements and the potential
margins of error they contain when considered
separately, conclusions have to be drawn by a
comparative analysis of the two figures.

The first four optimizations introduce a reduction of
about 2.3 times in the number of cycles. This has its
counterpart in an increased ILP from 0.96 to 2.11 and
then it is evident that there is no reduction in the
overall number of executed operations but only the
compiler is able to detect some code inefficiencies
and to translate them into parallel operations. When
some handcrafted code manipulation is introduced,

loop fusion and manual unrolling, the number of
cycles further reduces but the ILP falls down to
nearly 1. This has a simple explanation: the
parallelism introduced by the compiler so far was a
false one, in the sense that it compensated code
written in a too formal way: once these formal
redundancies are removed it results clear that only
one multiplication or one addition are executed at a
time and no true parallelism is exploited at all.
Change in the way of addressing arrays does not
improve the situation, it just reduces a little the
number of cycles.

The real improvement comes at the last step, where
the structure of the instruction set of SAINT and its
execution procedure allow the indiscriminate
application of restricted pointers. This special
declaration tells the compiler that it can really
schedule processing to happen in parallel, and while
the ILP jumps by a factor of almost 4.3 at the same
time the number of cycles decreases of a factor 4; this
means that in this case the processor is really capable
to calculate two floating point operations and two
loads or stores in parallel, also being capable at the
same time to manage the integer arithmetic of the
outer for loop from start to end.

A DSP V-LIW vectorial library
Needless to say that not for all the macroinstructions
of SAINT it was possible to reach a performance near
to the theoretical limit and with high degrees of
parallelism.

In particular operations containing calls to
precompiled mathematical functions constitute a
delicate group. It is evident that without a complete
vectorial set of operations it is not possible to really
speed-up the performance of the SAINT engine on
the whole range of functionality.
On the other side, writing vectorial libraries for
mathematical and trigonometric operators on a truly
parallel processor requires a great skill in numerical
computation techniques and could constitute a
research topic in itself. Being the purpose of this
relevant optimization effort to build an efficient
virtual DSP execution engine for the MPEG-4
AudioBIFS subtree and for WFS control in
particular, many specific SA functions in strong
relation with Audio synthesis has not been considered
yet.

CONCLUSION
We have presented in this paper the design and
implementation of a virtual DSP platform aiming at
the realization of a multichannel reproduction system
based on Wave Field Synthesis. The virtual DSP is

ZOIA AND ALBERTI MPEG-ORIENTED PLATFORM FOR WFS

AES 19TH INTERNATIONAL CONFERENCE 9

conceived to decode the MPEG-4 AudioBIFS subtree
(including Structured Audio) with a great efficiency
on superscalar devices.
The architecture of the complete WFS-based
rendering system has also been presented; it is build
on a three-stage processing chain obtained by
carefully splitting general-purpose and highly
dedicated processing tasks.

We would like to thank dr. Ulrich Horbach and Attila
Karamustafaoglu for helping us in understanding
many fundamental issues that made our work fruitful.
Many thanks to Daniel Farre for his precious help.

REFERENCES
[1] A.J. Berkhout (1988). A holographic approach

to acoustic control. Journal of the Audio
Engineering Society, vol. 36, pages 977-995.

[2] U. Horbach and M. Boone (1999) Future
Transmission and Rendering Formats for
Multichannel Sound. Proceedings of the AES
16th International Conference on Spatial Sound
Reproduction, Rovaniemi, Finland.

[3] A.J.Berkhout, D. de Vries, P. Vogel (1993)
Acoustic Control by Wave Field Synthesis.
Journal of the Acoustic Society, vol. 93, pages
2764-2778.

[4] M. Boone, E. Verheijen, G. Jansen (1993)
Virtual Reality by Sound Reproduction Based
on Wave Field Synthesis. Proceedings of the
100th AES Convention, Copenhagen, Denmark.

[5] G. E. Garnet (1991) Music, Signals and
Representations: A Survey. In Representations
of Musical Signals, G. De Poli, A. Piccialli, C.
Roads Editors, pages 325-370, MIT Press,
Cambridge, U.S.A.

[6] U. Horbach, A. Karamustafaoglu and M. Boone
(2000) Practical Implementation of a Data-
Based Wave Field Reproduction System.
Proceedings of the 108th AES Convention,
Paris, France.

[7] W. de Bruijin, T. Piccolo and M. Boone (1998)
Sound Recording Techniques for Wave Field
Synthesis and other Multichannel Sound
Systems. Proceedings of the 104th AES
Convention, Munich, Germany.

[8] C. Roads (1996) The computer music tutorial.
Part II, Sound Synthesis. MIT Press,
Cambridge, U.S.A.

[9] B. Vercoe and E. Scheirer (1999) SAOL: the
MPEG-4 Structured Audio Orchestra
Language. Computer Music Journal 23 (2) pp.
23-35.

[10] E. Scheirer and Y. Kim (1999) Generalized
Audio Coding with MPEG-4 Structured Audio.
Proceedings of the AES 17th International
Conference on High-Quality Audio Coding,
Florence, Italy.

[11] E. Scheirer, R. Väänänen and J. Huopaniemi
AudioBIFS: Describing audio Scenes with the
MPEG-4 Multimedia Standard. IEEE
Transactions on Multimedia, vol. 1, no. 3, pages
237- 250.

[12] G. Zoia (1998) A method for Complexity
Measurements in Structured Audio. ISO/IEC
JTC1/SC29/WG11 (MPEG98) contribution
document M3602.

[13] G. Zoia and C. Alberti (2000) A Virtual DSP
Architecture for MPEG-4 Structured Audio.
Proceedings of the COST-G6 Conference on
Digital Audio Effects - DAFX'00, Verona, Italy.

[14] R. Dannenberg and N. Thompson (1997) Real-
Time Software Synthesis on Superscalar
Architectures. Computer Music Journal, vol. 21,
no.3, pages 83-94.

[15] R. Espasa and M. Valero (1997) Exploiting
Instruction- and Data-Level Parallelism. IEEE
Micro, vol. 17, no. 5, pages 20-27.

[16] ISO/IEC JTC1/SC29/WG11 (1999) Information
Technology - Coding of Audio-Visual objects.
Part 1: Systems. MPEG-4 Systems International
Standard.

[17] G. Slavenburg et al. (1998) TM1100
Preliminary Data Book. Philips Electronics
NAC.

[18] D. Skillicorn (1994) Foundations of Parallel
Programming. Cambridge University Press,
Cambridge, U.K.

