24 research outputs found

    Chamber arrangement versus wall structure in the high-rank phylogenetic classification of Foraminifera

    Get PDF
    Foraminiferal wall micro/ultra-structures of Recent and well-preserved Jurassic (Bathonian) foraminifers of distinct foraminiferal high-rank taxonomic groups, Globothalamea (Rotaliida, Robertinida, and Textulariida), Miliolida, Spirillinata and Lagenata, are presented. Both calcite-cemented agglutinated and entirely calcareous foraminiferal walls have been investigated. Original test ultra-structures of Jurassic foraminifers are given for the first time. “Monocrystalline” wall-type which characterizes the class Spirillinata is documented in high resolution imaging. Globothalamea, Lagenata, porcelaneous representatives of Tubothalamea and Spirillinata display four different major types of wall-structure which may be related to distinct calcification processes. It confirms that these distinct molecular groups evolved separately, probably from single-chambered monothalamids, and independently developed unique wall types. Studied Jurassic simple bilocular taxa, characterized by undivided spiralling or irregular tubes, are composed of miliolid-type needle-shaped crystallites. In turn, spirillinid “monocrystalline” test structure has only been recorded within more complex, multilocular taxa possessing secondary subdivided chambers: Jurassic Paalzowella and Recent Patellina. More integrated molecular and structural studies are needed in order to better understand taxonomic position and phylogeny of tubular taxa. Unilocular and multichambered Lagenata (Lagenidae and Nodosariidae, respectively) show identical test micro and ultra-structure which suggests their close phylogenetic relationship and questions most recent theories of their separate evolutionary history and origins. A comparison of Recent, Cretaceous, and Jurassic foraminiferal test structure indicates that test characteristics at particular higher-rank taxonomic levels change very little over time and thus can serve as good proxies for the taxonomic designations of fossil taxa, when their state of preservation is appropriate for microstructural observations

    Mercury spikes as evidence of extended arc-volcanism around the Devonian-Carboniferous boundary in the South Tian Shan (southern Uzbekistan)

    Get PDF
    Recently, the end-Devonian mass extinction (Hangenberg Crisis, 359 Ma) was identified as a first-order mass extinction, albeit not one of the “Big Five” events. Many marine and terrestrial organisms were affected by this crisis. The cause of this mass extinction is still conjectural and widely discussed. Here we report anomalously high mercury (Hg) concentrations from the South Tian Shan (Uzbekistan), together with correlation using conodont biostratigraphic data. Hg enrichment (to 5825 ppb) was detected in marine deposits encompassing the Hangenberg Crisis. In the Novchomok section, the Hangenberg Crisis interval does not contain typical Hangenberg Black Shales; however, by means of inorganic geochemistry (enrichment of redox-sensitive elements such as Mo, V, and U) we detected an equivalent level despite the lack of marked facies changes. This is the first record of Hg and Hg/ total organic carbon anomalies in marly shales, marls and carbonates that are totally independent of facies changes, implying that volcanism was the most probable cause of the Hangenberg Crisis. This conclusion is confirmed by the presence of a negative δ13C excursion, which may reflect massive release of isotopically light carbon from volcanogenic and thermogenic devolatilization likely combined with increased arc-volcanism activity worldwide at the end of the Devonian

    Possible hominin footprints from the late Miocene (c. 5.7 Ma) of Crete?

    Get PDF
    © 2017 The Geologists' Association. We describe late Miocene tetrapod footprints (tracks) from the Trachilos locality in western Crete (Greece), which show hominin-like characteristics. They occur in an emergent horizon within an otherwise marginal marine succession of Messinian age (latest Miocene), dated to approximately 5.7 Ma (million years), just prior to the Messinian Salinity Crisis. The tracks indicate that the trackmaker lacked claws, and was bipedal, plantigrade, pentadactyl and strongly entaxonic. The impression of the large and non-divergent first digit (hallux) has a narrow neck and bulbous asymmetrical distal pad. The lateral digit impressions become progressively smaller so that the digital region as a whole is strongly asymmetrical. A large, rounded ball impression is associated with the hallux. Morphometric analysis shows the footprints to have outlines that are distinct from modern non-hominin primates and resemble those of hominins. The interpretation of these footprints is potentially controversial. The print morphology suggests that the trackmaker was a basal member of the clade Hominini, but as Crete is some distance outside the known geographical range of pre-Pleistocene hominins we must also entertain the possibility that they represent a hitherto unknown late Miocene primate that convergently evolved human-like foot anatomy

    Unlocking the biomineralization style and affinity of Paleozoic fusulinid foraminifera

    No full text
    Abstract Fusulinids are the most diverse, abundant and geographically widespread Paleozoic foraminifera which are widely considered to possess a “homogeneously microgranular” test microstructure composed of subangular grains of several micrometers in size. However, this texture appears to be a diagenetic artifact. Here we describe well-preserved Devonian calcareous fusulinids (Nanicella) from the Holy Cross Mountains (HCM) in central Poland. Foraminifera from Poland in which the primary nature of tests have not been masked by diagenesis are composed of low magnesium calcite spherical grains up to about 100 nanometers in diameter, identical to those observed in Recent and fossil hyaline foraminifera (Rotaliida, Globothalamea). These data call the paradigm of microgranular test microstructure of Foraminifera into question, and suggest a possible phylogenetic relationship between globothalamids and some fusulinids

    Planktonic Foraminiferal Biostratigraphy of the Upper Cretaceous of the Central European Basin

    No full text
    Planktonic foraminifera are one of the most stratigraphically important groups of organisms for the Cretaceous system. However, standard foraminiferal zonations based mostly on species from the Tethyan bioprovince are hardly applicable in temperate regions where warm-water taxa are scarce or lacking. We propose a foraminiferal zonation based on foraminiferal events recognized in the northern Foraminiferal Transitional Bioprovince, which likely has a high correlation potential at least at a regional scale. Fifteen planktonic foraminiferal zones are distinguished from the upper Albian up to the uppermost Maastrichtian strata in extra-Carpathian Poland and western Ukraine. From the bottom to the top, Thalmanninella appenninica, Th. globotruncanoides, Th. reicheli, Rotalipora cushmani, Whiteinella archaeocretacea, Helvetoglobotruncana helvetica, Marginotruncana coronata, M. sinuosa, Pseudotextularia nuttalli, Globotruncana linneiana, G. arca, Contusotruncana plummerae, Rugoglobigerina pennyi, Globotruncanella petaloidea and Guembelitria cretacea. These zones are calibrated by macrofaunal zonations

    Porosphaera globularis (Phillips, 1829) (Porifera, Calcarea) in the Campanian (Upper Cretaceous) of extra-Carpathian Poland

    Get PDF
    The stratigraphical distribution of Porosphaera globularis, a common calcareous sponge in the Upper Cretaceous (mostly Campanian and Maastrichtian) of Poland was studied. The presented material, both new and from museum collections, comes from the Campanian of the Miechów Synclinorium, in southern Poland, and from the Lower Campanian of Mielnik in the south-eastern part of the Mazury-Podlasie Homocline, in eastern Poland. The significance of the species in extra-regional correlation, its palaeobiogeography and stratigraphical potential is critically reviewed

    Planktonic Foraminiferal Biostratigraphy of the Upper Cretaceous of the Central European Basin

    No full text
    Planktonic foraminifera are one of the most stratigraphically important groups of organisms for the Cretaceous system. However, standard foraminiferal zonations based mostly on species from the Tethyan bioprovince are hardly applicable in temperate regions where warm-water taxa are scarce or lacking. We propose a foraminiferal zonation based on foraminiferal events recognized in the northern Foraminiferal Transitional Bioprovince, which likely has a high correlation potential at least at a regional scale. Fifteen planktonic foraminiferal zones are distinguished from the upper Albian up to the uppermost Maastrichtian strata in extra-Carpathian Poland and western Ukraine. From the bottom to the top, Thalmanninella appenninica, Th. globotruncanoides, Th. reicheli, Rotalipora cushmani, Whiteinella archaeocretacea, Helvetoglobotruncana helvetica, Marginotruncana coronata, M. sinuosa, Pseudotextularia nuttalli, Globotruncana linneiana, G. arca, Contusotruncana plummerae, Rugoglobigerina pennyi, Globotruncanella petaloidea and Guembelitria cretacea. These zones are calibrated by macrofaunal zonations

    Calcareous dinoflagellate blooms during the Late Cretaceous ‘greenhouse’ world—a case study from western Ukraine

    No full text
    The Late Cretaceous was a unique period in the history of the Earth characterized by elevated sea levels, reduced land area, and significantly high concentrations of atmospheric CO2 resulting in increased temperatures across the globe—a ‘Greenhouse World’. During this period, calcareous dinoflagellate cysts (c-dinocysts) flourished and became a ubiquitous constituent of calcifying plankton around the world. An acme in calcareous dinocysts during the Albian to the Turonian coincided with the highest recorded seawater surface temperatures and was possibly linked to conditions that favored calcification and a highly oligotrophic system in European shelf seas. This study examines the potential applicability of c-dinocysts as a proxy for paleoenvironmental conditions based on their assemblage changes plotted against foraminiferal occurrences and microfacies analysis. The material was extracted from the upper Turonian chalk of the Dubivtsi region in western Ukraine. An inverse correlation was observed between species diversity and the number of c-dinocyst specimens. Nutrient availability gradients apparently determined important changes in the calcareous dinocysts distribution. These trophic changes were likely caused by the interplay of eustatic sea-level fluctuations and Subhercynian tectonic activity leading to changeable nutrient inputs from the nearby land

    Test structure in some pioneer multichambered Paleozoic foraminifera

    No full text
    Foraminiferal wall microstructures, consistent with the molecular-based high-rank classification, are critical to understanding foraminiferal evolution and advanced taxonomic relationships. Although test structures are well documented for recent, Cenozoic, and some Mesozoic foraminifera, the diagnostic characteristics of Paleozoic taxa are largely unexplored. The majority of calcareous Paleozoic foraminifera have been assigned to the Fusulinata based on questionable homogeneously “microgranular” test wall microstructures, which have never been sufficiently documented for most taxa. We investigated the test structures of exceptionally well-preserved Devonian (Eifelian) Semitextularia thomasi, representing the first calcareous true multichambered (serial) foraminifera, and compared this species with a large fusiform Permian representative of “true” fusulinids (Neoschwagerinidae). The tests of Semitextularia thomasi display lamellar structures that are not observed in any other fossil or recent foraminiferal group. The Paleozoic foraminifera, traditionally referred to one taxon (the class Fusulinata), possess at least three contrasting test wall microstructures, representing separate high-rank taxonomic groups. Fusulinata is most likely a highly polyphyletic group that is in need of taxonomic revision. The term Fusulinata, defined as including all Paleozoic calcareous forms except Miliolida and Lagenata, is not phylogenetically meaningful and should no longer be used or should be restricted to true complex fusulinids with microgranular test structures, which appeared in the Carboniferous
    corecore