65 research outputs found
Persistent circulation of a fluoroquinolone-resistant Salmonella enterica Typhi clone in the Indian subcontinent.
BACKGROUND: The molecular structure of circulating enteric fever pathogens was studied using hospital-based genomic surveillance in a tertiary care referral centre in South India as a first genomic surveillance study, to our knowledge, of blood culture-confirmed enteric fever in the region. METHODS: Blood culture surveillance was conducted at St John's Medical College Hospital, Bengaluru, between July 2016 and June 2017. The bacterial isolates collected were linked to demographic variables of patients and subjected to WGS. The resulting pathogen genomic data were also globally contextualized to gauge possible phylogeographical patterns. RESULTS: Hospital-based genomic surveillance for enteric fever in Bengaluru, India, identified 101 Salmonella enterica Typhi and 14 S. Paratyphi A in a 1 year period. Ninety-six percent of isolates displayed non-susceptibility to fluoroquinolones. WGS showed the dominant pathogen was S. Typhi genotype 4.3.1.2 (H58 lineage II). A fluoroquinolone-resistant triple-mutant clone of S. Typhi 4.3.1.2 previously associated with gatifloxacin treatment failure in Nepal was implicated in 18% of enteric fever cases, indicating ongoing inter-regional circulation. CONCLUSIONS: Enteric fever in South India continues to be a major public health issue and is strongly associated with antimicrobial resistance. Robust microbiological surveillance is necessary to direct appropriate treatment and preventive strategies. Of particular concern is the emergence and expansion of the highly fluoroquinolone-resistant triple-mutant S. Typhi clone and its ongoing inter- and intra-country transmission in South Asia, which highlights the need for regional coordination of intervention strategies, including vaccination and longer-term strategies such as improvements to support hygiene and sanitation
Describing a new food group classification system for UK biobank: analysis of food groups and sources of macro- and micronutrients in 208,200 participants.
PURPOSE: The UK Biobank study collected detailed dietary data using a web-based self-administered 24 h assessment tool, the Oxford WebQ. We aimed to describe a comprehensive food grouping system for this questionnaire and to report dietary intakes and key sources of selected nutrients by sex and education. METHODS: Participants with at least one valid 24-h questionnaire were included (n = 208,200). Dietary data were grouped based on the presence of nutrients as well as culinary use, processing, and plant/animal origin. For each food group, we calculated the contribution to energy intake, key macronutrients, and micronutrients. We also identified the top contributors to energy intake, free sugars and saturated fat by sex and education. RESULTS: From the 93 food groups, the top five contributors to energy intake (in descending order) were: desserts/cakes/pastries; white bread; white pasta/rice; bananas/other fruit; semi-skimmed milk. Wine, beer, and fruit juices were the top beverage contributors to overall energy intake. Biscuits, and desserts/cakes/pastries were the highest contributors to free sugars, total fat, and saturated fat intakes, but also contributed to the calcium and iron intakes. Top contributors to energy, saturated fat, and free sugars were broadly similar by sex and education category, with small differences in average nutrient intakes across the population. CONCLUSION: This new food classification system will support the growing interest in the associations between food groups and health outcomes and the development of food-based dietary guidelines. Food group variables will be available to all users of the UK Biobank WebQ questionnaire
Laboratory and molecular surveillance of paediatric typhoidal Salmonella in Nepal: Antimicrobial resistance and implications for vaccine policy.
BACKGROUND: Children are substantially affected by enteric fever in most settings with a high burden of the disease, including Nepal. However pathogen population structure and transmission dynamics are poorly delineated in young children, the proposed target group for immunization programs. Here we present whole genome sequencing and antimicrobial susceptibility data on 198 S. Typhi and 66 S. Paratyphi A isolated from children aged 2 months to 15 years of age during blood culture surveillance at Patan Hospital, Nepal, 2008-2016. PRINCIPAL FINDINGS: S. Typhi was the dominant agent and comprised several distinct genotypes, dominated by 4.3.1 (H58). The heterogeneity of genotypes in children under five was reduced compared to data from 2005-2006, attributable to ongoing clonal expansion of H58. Most isolates (86%) were non-susceptible to fluoroquinolones, associated mainly with S. Typhi H58 lineage II and S. Paratyphi A harbouring mutations in the quinolone resistance-determining region (QRDR); non-susceptible strains from these groups accounted for 50% and 25% of all isolates. Multi-drug resistance (MDR) was rare (3.5% of S. Typhi, 0 S. Paratyphi A) and restricted to chromosomal insertions of resistance genes in H58 lineage I strains. Temporal analyses revealed a shift in dominance from H58 Lineage I to H58 Lineage II, with the latter being significantly more common after 2010. Comparison to global data sets showed the local S. Typhi and S. Paratyphi A strains had close genetic relatives in other South Asian countries, indicating regional strain circulation. Multiple imports from India of ciprofloxacin-resistant H58 lineage II strains were identified, but these were rare and showed no evidence of clonal replacement of local S. Typhi. SIGNIFICANCE: These data indicate that enteric fever in Nepal continues to be a major public health issue with ongoing inter- and intra-country transmission, and highlights the need for regional coordination of intervention strategies. The absence of a S. Paratyphi A vaccine is cause for concern, given its prevalence as a fluoroquinolone resistant enteric fever agent in this setting
Pathogen genomic surveillance of typhoidal Salmonella infection in adults and children reveals no association between clinical outcomes and infecting genotypes
Funder: Rhodes Scholarships; doi: http://dx.doi.org/10.13039/501100000697Funder: Bill and Melinda Gates Foundation; doi: http://dx.doi.org/10.13039/100000865Abstract: Background: India is endemic for enteric fever, and it is not known whether the variations in clinical manifestations between patients are due to host, environmental or pathogen factors. Blood culture surveillance was conducted at St. John’s Medical College Hospital, Bangalore, between July 2016 and June 2017. Clinical, laboratory and demographic data were collected from each case, and bacterial isolates were subjected to whole genome sequencing. Comparative analysis between adults and paediatric patients was carried out to ascertain differences between adult and paediatric disease. Results: Among the 113 cases of blood culture-confirmed enteric fever, young adults (16–30 years) and children < 15 years accounted for 47% and 37% of cases, respectively. Anaemia on presentation was seen in 46% of cases, and 19% had an abnormal leucocyte count on presentation. The majority received treatment as inpatients (70%), and among these, adults had a significantly longer duration of admission when compared with children (p = 0.002). There were atypical presentations including arthritis, acute haemolysis and a case of repeated typhoid infection with two separate S. Typhi genotypes. There was no association between infecting genotype/serovar and treatment status (outpatient vs inpatient), month of isolation, duration of admission, patient age (adult or child), antimicrobial susceptibility, Widal positivity or haematologic parameters. Conclusions: Amidst the many public health concerns of South India, enteric fever continues to contribute substantially to hospital burden with non-specific as well as uncommon clinical features in both paediatric and adult populations likely driven by host and environmental factors. Robust clinical surveillance as well monitoring of pathogen population structure is required to inform treatment and preventive strategies
Using a Human Challenge Model of Infection to Measure Vaccine Efficacy: A Randomised, Controlled Trial Comparing the Typhoid Vaccines M01ZH09 with Placebo and Ty21a
Background
Typhoid persists as a major cause of global morbidity. While several licensed vaccines to prevent typhoid are available, they are of only moderate efficacy and unsuitable for use in children less than two years of age. Development of new efficacious vaccines is complicated by the human host-restriction of Salmonella enterica serovar Typhi (S. Typhi) and lack of clear correlates of protection. In this study, we aimed to evaluate the protective efficacy of a single dose of the oral vaccine candidate, M01ZH09, in susceptible volunteers by direct typhoid challenge.
Methods and Findings
We performed a randomised, double-blind, placebo-controlled trial in healthy adult participants at a single centre in Oxford (UK). Participants were allocated to receive one dose of double-blinded M01ZH09 or placebo or 3-doses of open-label Ty21a. Twenty-eight days after vaccination, participants were challenged with 104CFU S. Typhi Quailes strain. The efficacy of M01ZH09 compared with placebo (primary outcome) was assessed as the percentage of participants reaching pre-defined endpoints constituting typhoid diagnosis (fever and/or bacteraemia) during the 14 days after challenge. Ninety-nine participants were randomised to receive M01ZH09 (n = 33), placebo (n = 33) or 3-doses of Ty21a (n = 33). After challenge, typhoid was diagnosed in 18/31 (58.1% [95% CI 39.1 to 75.5]) M01ZH09, 20/30 (66.7% [47.2 to 87.2]) placebo, and 13/30 (43.3% [25.5 to 62.6]) Ty21a vaccine recipients. Vaccine efficacy (VE) for one dose of M01ZH09 was 13% [95% CI -29 to 41] and 35% [-5 to 60] for 3-doses of Ty21a. Retrospective multivariable analyses demonstrated that pre-existing anti-Vi antibody significantly reduced susceptibility to infection after challenge; a 1 log increase in anti-Vi IgG resulting in a 71% decrease in the hazard ratio of typhoid diagnosis ([95% CI 30 to 88%], p = 0.006) during the 14 day challenge period. Limitations to the study included the requirement to limit the challenge period prior to treatment to 2 weeks, the intensity of the study procedures and the high challenge dose used resulting in a stringent model.
Conclusions
Despite successfully demonstrating the use of a human challenge study to directly evaluate vaccine efficacy, a single-dose M01ZH09 failed to demonstrate significant protection after challenge with virulent Salmonella Typhi in this model. Anti-Vi antibody detected prior to vaccination played a major role in outcome after challenge
Global diversity and antimicrobial resistance of typhoid fever pathogens: insights from a meta-analysis of 13,000 Salmonella Typhi genomes
Background:
The Global Typhoid Genomics Consortium was established to bring together the typhoid research community to aggregate and analyse Salmonella enterica serovar Typhi (Typhi) genomic data to inform public health action. This analysis, which marks 22 years since the publication of the first Typhi genome, represents the largest Typhi genome sequence collection to date (n=13,000).
Methods:
This is a meta-analysis of global genotype and antimicrobial resistance (AMR) determinants extracted from previously sequenced genome data and analysed using consistent methods implemented in open analysis platforms GenoTyphi and Pathogenwatch.
Results:
Compared with previous global snapshots, the data highlight that genotype 4.3.1 (H58) has not spread beyond Asia and Eastern/Southern Africa; in other regions, distinct genotypes dominate and have independently evolved AMR. Data gaps remain in many parts of the world, and we show the potential of travel-associated sequences to provide informal ‘sentinel’ surveillance for such locations. The data indicate that ciprofloxacin non-susceptibility (>1 resistance determinant) is widespread across geographies and genotypes, with high-level ciprofloxacin resistance (≥3 determinants) reaching 20% prevalence in South Asia. Extensively drug-resistant (XDR) typhoid has become dominant in Pakistan (70% in 2020) but has not yet become established elsewhere. Ceftriaxone resistance has emerged in eight non-XDR genotypes, including a ciprofloxacin-resistant lineage (4.3.1.2.1) in India. Azithromycin resistance mutations were detected at low prevalence in South Asia, including in two common ciprofloxacin-resistant genotypes.
Conclusions:
The consortium’s aim is to encourage continued data sharing and collaboration to monitor the emergence and global spread of AMR Typhi, and to inform decision-making around the introduction of typhoid conjugate vaccines (TCVs) and other prevention and control strategies
Pathogen diversity and antimicrobial resistance transmission of Salmonella enterica serovars Typhi and Paratyphi A in Bangladesh, Nepal, and Malawi: a genomic epidemiological study.
BACKGROUND: Enteric fever is a serious public health concern. The causative agents, Salmonella enterica serovars Typhi and Paratyphi A, frequently have antimicrobial resistance (AMR), leading to limited treatment options and poorer clinical outcomes. We investigated the genomic epidemiology, resistance mechanisms, and transmission dynamics of these pathogens at three urban sites in Africa and Asia. METHODS: S Typhi and S Paratyphi A bacteria isolated from blood cultures of febrile children and adults at study sites in Dhaka (Bangladesh), Kathmandu (Nepal), and Blantyre (Malawi) during STRATAA surveillance were sequenced. Isolates were charactered in terms of their serotypes, genotypes (according to GenoTyphi and Paratype), molecular determinants of AMR, and population structure. We used phylogenomic analyses incorporating globally representative genomic data from previously published surveillance studies and ancestral state reconstruction to differentiate locally circulating from imported pathogen AMR variants. Clusters of sequences without any single-nucleotide variants in their core genome were identified and used to explore spatiotemporal patterns and transmission dynamics. FINDINGS: We sequenced 731 genomes from isolates obtained during surveillance across the three sites between Oct 1, 2016, and Aug 31, 2019 (24 months in Dhaka and Kathmandu and 34 months in Blantyre). S Paratyphi A was present in Dhaka and Kathmandu but not Blantyre. S Typhi genotype 4.3.1 (H58) was common in all sites, but with different dominant variants (4.3.1.1.EA1 in Blantyre, 4.3.1.1 in Dhaka, and 4.3.1.2 in Kathmandu). Multidrug resistance (ie, resistance to chloramphenicol, co-trimoxazole, and ampicillin) was common in Blantyre (138 [98%] of 141 cases) and Dhaka (143 [32%] of 452), but absent from Kathmandu. Quinolone-resistance mutations were common in Dhaka (451 [>99%] of 452) and Kathmandu (123 [89%] of 138), but not in Blantyre (three [2%] of 141). Azithromycin-resistance mutations in acrB were rare, appearing only in Dhaka (five [1%] of 452). Phylogenetic analyses showed that most cases derived from pre-existing, locally established pathogen variants; 702 (98%) of 713 drug-resistant infections resulted from local circulation of AMR variants, not imported variants or recent de novo emergence; and pathogen variants circulated across age groups. 479 (66%) of 731 cases clustered with others that were indistinguishable by point mutations; individual clusters included multiple age groups and persisted for up to 2·3 years, and AMR determinants were invariant within clusters. INTERPRETATION: Enteric fever was associated with locally established pathogen variants that circulate across age groups. AMR infections resulted from local transmission of resistant strains. These results form a baseline against which to monitor the impacts of control measures. FUNDING: Wellcome Trust, Bill & Melinda Gates Foundation, EU Horizon 2020, and UK National Institute for Health and Care Research
Evaluation of the Clinical and Microbiological Response to Salmonella Paratyphi A Infection in the First Paratyphoid Human Challenge Model.
BACKGROUND: To expedite the evaluation of vaccines against paratyphoid fever, we aimed to develop the first human challenge model of Salmonella enterica serovar Paratyphi A infection. METHODS: Two groups of 20 participants underwent oral challenge with S. Paratyphi A following sodium bicarbonate pretreatment at 1 of 2 dose levels (group 1: 1-5 × 103 colony-forming units [CFU] and group 2: 0.5-1 × 103 CFU). Participants were monitored in an outpatient setting with daily clinical review and collection of blood and stool cultures. Antibiotic treatment was started when prespecified diagnostic criteria were met (temperature ≥38°C for ≥12 hours and/or bacteremia) or at day 14 postchallenge. RESULTS: The primary study objective was achieved following challenge with 1-5 × 103 CFU (group 1), which resulted in an attack rate of 12 of 20 (60%). Compared with typhoid challenge, paratyphoid was notable for high rates of subclinical bacteremia (at this dose, 11/20 [55%]). Despite limited symptoms, bacteremia persisted for up to 96 hours after antibiotic treatment (median duration of bacteremia, 53 hours [interquartile range, 24-85 hours]). Shedding of S. Paratyphi A in stool typically preceded onset of bacteremia. CONCLUSIONS: Challenge with S. Paratyphi A at a dose of 1-5 × 103 CFU was well tolerated and associated with an acceptable safety profile. The frequency and persistence of bacteremia in the absence of clinical symptoms was notable, and markedly different from that seen in previous typhoid challenge studies. We conclude that the paratyphoid challenge model is suitable for the assessment of vaccine efficacy using endpoints that include bacteremia and/or symptomatology. CLINICAL TRIALS REGISTRATION: NCT02100397
Evaluating the relationship between ciprofloxacin prescription and non-susceptibility in Salmonella Typhi in Blantyre, Malawi: an observational study
Background
Ciprofloxacin is the first-line drug for treating typhoid fever in many countries in Africa with a high disease burden, but the emergence of non-susceptibility poses a challenge to public health programmes. Through enhanced surveillance as part of vaccine evaluation, we investigated the occurrence and potential determinants of ciprofloxacin non-susceptibility in Blantyre, Malawi.
Methods
We conducted systematic surveillance of typhoid fever cases and antibiotic prescription in two health centres in Blantyre, Malawi, between Oct 1, 2016, and Oct 31, 2019, as part of the STRATAA and TyVAC studies. In addition, blood cultures were taken from eligible patients presenting at Queen Elizabeth Central Hospital, Blantyre, as part of routine diagnosis. Inclusion criteria were measured or reported fever, or clinical suspicion of sepsis. Microbiologically, we identified Salmonella enterica serotype Typhi (S Typhi) isolates with a ciprofloxacin non-susceptible phenotype from blood cultures, and used whole-genome sequencing to identify drug-resistance mutations and phylogenetic relationships. We constructed generalised linear regression models to investigate associations between the number of ciprofloxacin prescriptions given per month to study participants and the proportion of S Typhi isolates with quinolone resistance-determining region (QRDR) mutations in the following month.
Findings
From 46 989 blood cultures from Queen Elizabeth Central Hospital, 502 S Typhi isolates were obtained, 30 (6%) of which had either decreased ciprofloxacin susceptibility, or ciprofloxacin resistance. From 11 295 blood cultures from STRATAA and TyVAC studies, 241 microbiologically confirmed cases of typhoid fever were identified, and 198 isolates from 195 participants sequenced (mean age 12·8 years [SD 10·2], 53% female, 47% male). Between Oct 1, 2016, and Aug 31, 2019, of 177 typhoid fever cases confirmed by whole-genome sequencing, four (2%) were caused by S Typhi with QRDR mutations, compared with six (33%) of 18 cases between Sept 1 and Oct 31, 2019. This increase was associated with a preceding spike in ciprofloxacin prescriptions. Every additional prescription of ciprofloxacin given to study participants in the preceding month was associated with a 4·2% increase (95% CI 1·8–7·0) in the relative risk of isolating S Typhi with a QRDR mutation (p=0·0008). Phylogenetic analysis showed that S Typhi isolates with QRDR mutations from September and October, 2019, belonged to two distinct subclades encoding two different QRDR mutations, and were closely related (4–10 single-nucleotide polymorphisms) to susceptible S Typhi endemic to Blantyre.
Interpretation
We postulate a causal relationship between increased ciprofloxacin prescriptions and an increase in fluoroquinolone non-susceptibility in S Typhi. Decreasing ciprofloxacin use by improving typhoid diagnostics, and reducing typhoid fever cases through the use of an efficacious vaccine, could help to limit the emergence of resistance
Plasma lipid profiles discriminate bacterial from viral infection in febrile children
Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics
- …