140 research outputs found

    Tin plating using liquid dynamic compaction

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1994.Includes bibliographical references (p. 109-113).by Michael Charles Zody.M.S

    ATHLATES: accurate typing of human leukocyte antigen through exome sequencing

    Get PDF
    Human leukocyte antigen (HLA) typing at the allelic level can in theory be achieved using whole exome sequencing (exome-seq) data with no added cost but has been hindered by its computational challenge. We developed ATHLATES, a program that applies assembly, allele identification and allelic pair inference to short read sequences, and applied it to data from Illumina platforms. In 15 data sets with adequate coverage for HLA-A, -B, -C, -DRB1 and -DQB1 genes, ATHLATES correctly reported 74 out of 75 allelic pairs with an overall concordance rate of 99% compared with conventional typing. This novel approach should be broadly applicable to research and clinical laboratories

    Whole Genome Pyrosequencing of Rare Hepatitis C Virus Genotypes Enhances Subtype Classification and Identification of Naturally Occurring Drug Resistance Variants

    Get PDF
    Background. Infection with hepatitis C virus (HCV) is a burgeoning worldwide public health problem, with 170 million infected individuals and an estimated 20 million deaths in the coming decades. While 6 main genotypes generally distinguish the global geographic diversity of HCV, a multitude of closely related subtypes within these genotypes are poorly defined and may influence clinical outcome and treatment options. Unfortunately, the paucity of genetic data from many of these subtypes makes time-consuming primer walking the limiting step for sequencing understudied subtypes. Methods. Here we combined long-range polymerase chain reaction amplification with pyrosequencing for a rapid approach to generate the complete viral coding region of 31 samples representing poorly defined HCV subtypes. Results. Phylogenetic classification based on full genome sequences validated previously identified HCV subtypes, identified a recombinant sequence, and identified a new distinct subtype of genotype 4. Unlike conventional sequencing methods, use of deep sequencing also facilitated characterization of minor drug resistance variants within these uncommon or, in some cases, previously uncharacterized HCV subtypes. Conclusions. These data aid in the classification of uncommon HCV subtypes while also providing a high-resolution view of viral diversity within infected patients, which may be relevant to the development of therapeutic regimens to minimize drug resistanc

    Identifying novel constrained elements by exploiting biased substitution patterns

    Get PDF
    Motivation: Comparing the genomes from closely related species provides a powerful tool to identify functional elements in a reference genome. Many methods have been developed to identify conserved sequences across species; however, existing methods only model conservation as a decrease in the rate of mutation and have ignored selection acting on the pattern of mutations

    The Rose-comb Mutation in Chickens Constitutes a Structural Rearrangement Causing Both Altered Comb Morphology and Defective Sperm Motility

    Get PDF
    Rose-comb, a classical monogenic trait of chickens, is characterized by a drastically altered comb morphology compared to the single-combed wild-type. Here we show that Rose-comb is caused by a 7.4 Mb inversion on chromosome 7 and that a second Rose-comb allele arose by unequal crossing over between a Rose-comb and wild-type chromosome. The comb phenotype is caused by the relocalization of the MNR2 homeodomain protein gene leading to transient ectopic expression of MNR2 during comb development. We also provide a molecular explanation for the first example of epistatic interaction reported by Bateson and Punnett 104 years ago, namely that walnut-comb is caused by the combined effects of the Rose-comb and Pea-comb alleles. Transient ectopic expression of MNR2 and SOX5 (causing the Pea-comb phenotype) occurs in the same population of mesenchymal cells and with at least partially overlapping expression in individual cells in the comb primordium. Rose-comb has pleiotropic effects, as homozygosity in males has been associated with poor sperm motility. We postulate that this is caused by the disruption of the CCDC108 gene located at one of the inversion breakpoints. CCDC108 is a poorly characterized protein, but it contains a MSP (major sperm protein) domain and is expressed in testis. The study illustrates several characteristic features of the genetic diversity present in domestic animals, including the evolution of alleles by two or more consecutive mutations and the fact that structural changes have contributed to fast phenotypic evolution
    corecore