318 research outputs found

    Basic Logic and Quantum Entanglement

    Get PDF
    As it is well known, quantum entanglement is one of the most important features of quantum computing, as it leads to massive quantum parallelism, hence to exponential computational speed-up. In a sense, quantum entanglement is considered as an implicit property of quantum computation itself. But...can it be made explicit? In other words, is it possible to find the connective "entanglement" in a logical sequent calculus for the machine language? And also, is it possible to "teach" the quantum computer to "mimic" the EPR "paradox"? The answer is in the affirmative, if the logical sequent calculus is that of the weakest possible logic, namely Basic logic. A weak logic has few structural rules. But in logic, a weak structure leaves more room for connectives (for example the connective "entanglement"). Furthermore, the absence in Basic logic of the two structural rules of contraction and weakening corresponds to the validity of the no-cloning and no-erase theorems, respectively, in quantum computing.Comment: 10 pages, 1 figure,LaTeX. Shorter version for proceedings requirements. Contributed paper at DICE2006, Piombino, Ital

    Factorization and Entanglement in Quantum Systems

    Get PDF
    We discuss the question of entanglement versus separability of pure quantum states in direct product Hilbert spaces and the relevance of this issue to physics. Different types of separability may be possible, depending on the particular factorization or split of the Hilbert space. A given orthonormal basis set for a Hilbert space is defined to be of type (p,q) if p elements of the basis are entangled and q are separable, relative to a given bi-partite factorization of that space. We conjecture that not all basis types exist for a given Hilbert space.Comment: 11 page

    Quantum Computation toward Quantum Gravity

    Get PDF
    The aim of this paper is to enlight the emerging relevance of Quantum Information Theory in the field of Quantum Gravity. As it was suggested by J. A. Wheeler, information theory must play a relevant role in understanding the foundations of Quantum Mechanics (the "It from bit" proposal). Here we suggest that quantum information must play a relevant role in Quantum Gravity (the "It from qubit" proposal). The conjecture is that Quantum Gravity, the theory which will reconcile Quantum Mechanics with General Relativity, can be formulated in terms of quantum bits of information (qubits) stored in space at the Planck scale. This conjecture is based on the following arguments: a) The holographic principle, b) The loop quantum gravity approach and spin networks, c) Quantum geometry and black hole entropy. Here we present the quantum version of the holographic principle by considering each pixel of area of an event horizon as a qubit. This is possible if the horizon is pierced by spin networks' edges of spin 1\2, in the superposed state of spin "up" and spin "down".Comment: 11 pages. Contributed to XIII International Congress on Mathematical Physics (ICMP 2000), London, England, 17-22 Jul 2000. Typos corrected. Accepted for publication in General Relativity and Gravitatio

    Evaluating an Insurance-Sponsored Weight Management Program With the RE-AIM Model, West Virginia, 2004-2008

    Get PDF
    Introduction: Evaluations of weight management programs in real-world settings are lacking. The RE-AIM model (reach, effectiveness, adoption, implementation, maintenance) was developed to address this deficiency. Our primary objective was to evaluate a 12-week insurance-sponsored weight management intervention by using the RE-AIM model, including short-term and long-term individual outcomes and setting-level implementation factors. Our secondary objective was to critique the RE-AIM model and its revised calculation methods. Methods: We created operational definitions for components of the 5 RE-AIM indices and used standardized effect size values from various statistical procedures to measure multiple components or outcomes within each index. We used chi(2) analysis to compare categorical variables and repeated-measures analysis of variance to assess the magnitude of outcome changes over time. Results: On the basis of data for 1,952 participants and surveys completed by administrators at 23 sites, RE-AIM indices ranging from 0 to 100 revealed low program reach and adoption (5.4 and 8.8, respectively), moderate effectiveness (43.8), high implementation (91.4), low to moderate individual maintenance (21.2), and moderate to high site maintenance (77.8). Median (interquartile range) weight loss was 13 lb (6.5-21.4 lb) among participants who completed phase I (12 weeks; 76.5%) and 15 lb (6.1-30.3 lb) among those who completed phase II (1 year; 45.7%). Conclusion: This program had a significant, positive effect on participants and has been sustainable but needs to be expanded for more public health benefit. The RE-AIM model provided a useful framework to determine program strengths and weaknesses and to present them to the insurance agency and public health decision makers

    Computational capacity of the universe

    Full text link
    Merely by existing, all physical systems register information. And by evolving dynamically in time, they transform and process that information. The laws of physics determine the amount of information that a physical system can register (number of bits) and the number of elementary logic operations that a system can perform (number of ops). The universe is a physical system. This paper quantifies the amount of information that the universe can register and the number of elementary operations that it can have performed over its history. The universe can have performed no more than 1012010^{120} ops on 109010^{90} bits.Comment: 17 pages, TeX. submitted to Natur

    Prognostic role of tumor necrosis, microvessel density, vascular endothelial growth factor and hypoxia inducible factor-1alpha in patients with clear cell renal carcinoma after radical nephrectomy in a long term follow-up.

    Get PDF
    Angiogenesis is a critical step in the growth, invasive progression and metastatic spread of solid tumors. We investigated the importance of tumor necrosis, and microvessel density (MVD), vascular endothelial growth factor (VEGF) and hypoxia inducible factor 1α (HIF-1α) immunohistochemical expression in a large series of clear cell renal carcinomas treated with radical nephrectomy and assessed the prognostic value of their expression in terms of patient survival at long-term follow up. Fifty patients with clear cell RCC were examined. The features considered when evaluating the patients were age, tumor size and grade, intratumoral vascular and renal capsula invasion, histological necrosis, and MVD, vascular and tumoral cell VEGF, and vascular, tumoral cytoplasmic and nuclear HIF-1α expression on the histologic specimens. All considered parameters were correlated with patient specific survival. Mean age was 62.06 ± 6.8 years. Median follow-up was 191.66 months; median survival was 120.86 months. Twenty-one patients developed metastases in the follow-up. Tumor necrosis, microvascular invasion and renal capsula infiltration are more likely to occur in high stage and grade RCC; cytoplasmic HIF-1α is highly expressed in high grade RCC. Survival is dependent upon tumor stage and grade, the presence of intratumoral vascular invasion and capsular infiltration, and tumor necrosis; MVD also resulted as being an important prognostic factor. VEGF and HIF-1α correlate with prognosis in high stage tumors where VEGF is the most important independent prognostic factor for cancer specific death. The histological and immunohistochemical parameters considered in our study can influence disease recurrence and survival in RCC

    A Minimal Model for Quantum Gravity

    Full text link
    We argue that the model of a quantum computer with N qubits on a quantum space background, which is a fuzzy sphere with n=2^N elementary cells, can be viewed as the minimal model for Quantum Gravity. In fact, it is discrete, has no free parameters, is Lorentz invariant, naturally realizes the Holographic Principle, and defines a subset of punctures of spin networks' edges of Loop Quantum Gravity labelled by spins j=2^(N-1)-1/2. In this model, the discrete area spectrum of the cells, which is not equally spaced, is given in units of the minimal area of Loop Quantum Gravity (for j=1/2), and provides a discrete emission spectrum for quantum black holes. When the black hole emits one string of N bits encoded in one of the n cells, its horizon area decreases of an amount equal to the area of one cell.Comment: 11 pages, 4 figures, Contributed paper at DICE 2004, 1-4 September 2004, Piombino, Italy minor changes, misprints correcte

    Electronic energy migration in Microtubules

    Get PDF
    The repeating arrangement of tubulin dimers confers great mechanical strength to microtubules, which are used as scaffolds for intracellular macromolecular transport in cells and exploited in biohybrid devices. The crystalline order in a microtubule, with lattice constants short enough to allow energy transfer between amino acid chromophores, is similar to synthetic structures designed for light harvesting. After photoexcitation, can these amino acid chromophores transfer excitation energy along the microtubule like a natural or artificial light-harvesting system? Here, we use tryptophan autofluorescence lifetimes to probe energy hopping between aromatic residues in tubulin and microtubules. By studying how the quencher concentration alters tryptophan autofluorescence lifetimes, we demonstrate that electronic energy can diffuse over 6.6 nm in microtubules. We discover that while diffusion lengths are influenced by tubulin polymerization state (free tubulin versus tubulin in the microtubule lattice), they are not significantly altered by the average number of protofilaments (13 versus 14). We also demonstrate that the presence of the anesthetics etomidate and isoflurane reduce exciton diffusion. Energy transport as explained by conventional Förster theory (accommodating for interactions between tryptophan and tyrosine residues) does not sufficiently explain our observations. Our studies indicate that microtubules are, unexpectedly, effective light harvesters
    • …
    corecore