7 research outputs found

    Cladophialophora Bantiana Brain Abscess and Concurrent Pulmonary Cryptococcus Neoformans Infection in a Patient Twenty Years After Renal Transplantation

    Get PDF
    Recipients of solid organ transplants are at risk for a variety of infections due to their immunocompromised status. The types of infections are often correlated to the timing from their transplant. After about six to twelve months, transplant recipients remain at risk for typical community acquired pathogens, late viral infections, and fungal infections including atypical molds such as Cladophialophora bantiana. C. bantiana is a dematiaceous fungus that has a predilection for infecting the brain and is the most common cause of cerebral phaeohyphomycosis - a term used to describe infections caused by molds that produce dark cell walls. Patients with cerebral abscesses due to C. bantiana infections have an estimated mortality of about 70%. Improved outcomes have been seen in patients who receive both surgical and antifungal therapy. While there are no clear guidelines on antifungal therapy, most cases have been treated with combination amphotericin B, a triazole (itraconazole, voriconazole, or posaconazole) with flucytosine sometimes in conjunction as well. This case describes a patient with C. bantiana brain abscess and concurrent Cryptococcus neoformans pulmonary infection that occurred twenty years after his kidney transplantation. He was treated successfully with two craniotomies for cerebral abscess debridement and liposomal amphotericin B followed by planned lifelong voriconazole

    GATA1 Controls Numbers of Hematopoietic Progenitors and Their Response to Autoimmune Neuroinflammation

    Get PDF
    GATA-binding factor 1 (GATA1) is a transcription factor that governs the development and function of multiple hematopoietic cell lineages. GATA1 is expressed in hematopoietic stem and progenitor cells (HSPCs) and is essential for erythroid lineage commitment; however, whether it plays a role in hematopoietic stem cell (HSC) biology and the development of myeloid cells, and what that role might be, remains unclear. We initially set out to test the role of eosinophils in experimental autoimmune encephalomyelitis (EAE), a model of central nervous system autoimmunity, using mice lacking a double GATA-site (ΔdblGATA), which lacks eosinophils due to the deletion of the dblGATA enhancer to Gata1, which alters its expression. ΔdblGATA mice were resistant to EAE, but not because of a lack of eosinophils, suggesting that these mice have an additional defect. ΔdblGATA mice with EAE had fewer inflammatory myeloid cells than the control mice, suggesting that resistance to EAE is caused by a defect in myeloid cells. Naïve ΔdblGATA mice also showed reduced frequency of CD11b+ myeloid cells in the blood, indicating a defect in myeloid cell production. Examination of HSPCs revealed fewer HSCs and myeloid cell progenitors in the ΔdblGATA bone marrow (BM), and competitive BM chimera experiments showed a reduced capacity of the ΔdblGATA BM to reconstitute immune cells, suggesting that reduced numbers of ΔdblGATA HSPCs cause a functional deficit during inflammation. Taken together, our data show that GATA1 regulates the number of HSPCs and that reduced GATA1 expression due to dblGATA deletion results in a diminished immune response following the inflammatory challenge

    CSF-1 maintains pathogenic but not homeostatic myeloid cells in the central nervous system during autoimmune neuroinflammation

    Get PDF
    SignificanceMultiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are autoimmune diseases characterized by accumulation of myeloid cells in the central nervous system (CNS). Both harmful and beneficial myeloid cells are present in EAE/MS, and a goal of MS therapy is to preferentially remove harmful myeloid cells. The receptor for CSF-1 (CSF-1R) is found on myeloid cells and is important for their survival. CSF-1R can bind two ligands, CSF-1 and IL-34, but it is not known whether their functions in EAE/MS differ. We found that blocking CSF-1 depleted only harmful myeloid cells in the CNS and suppressed EAE, whereas blocking IL-34 had no effect. Thus, we propose that blocking CSF-1 could be a therapy for MS

    Mucormycosis Leading to Cerebral Edema and Cerebellar Tonsillar Herniation after Allogeneic Bone Marrow Transplant: A Case Report

    No full text
    Introduction. Mucormycosis following hematopoietic stem cell transplant (HSCT) carries a very high mortality rate. Pulmonary mucormycosis often leads to systemic dissemination and eventual death. It is imperative for transplant providers to have a high level of suspicion for mucormycosis and initiate early treatment. Here, we present a 64-year-old woman who died of disseminated mucormycosis 13 days following her allogeneic HSCT. Case Presentation. A 64-year-old female with a history of acute myeloid leukemia (AML) presented for allogeneic HSCT and passed away from intracerebral hemorrhage secondary to mucormycosis infection 13 days following her transplant. On autopsy, it was found she had angioinvasive mucormycosis in her frontal lobe leading to cerebral edema which eventually led to tonsillar herniation and brainstem infarction. Her lungs were the likely source of infectious dissemination. Discussion. This case represents an unusual course of events following HSCT in that no other published case shows tonsillar herniation resulting from mucormycosis-related intracerebral swelling. We also report this case because it is believed mucormycosis in HSCT patients is underreported. Additionally, our case highlights the importance of increased vigilance for mucormycosis in patients with prolonged neutropenia prior to HSCT and the potential link of voriconazole prophylaxis and increased risk for mucormycosis

    Takayasu'S Arteritis is Associated with Hla-B*52, but not with Hla-B*51, in Turkey

    Get PDF
    Introduction HLA-B*51 and HLA-B*52 are two close human leukocyte antigen (HLA) allele groups with minor amino acid differences. However, they are associated with two different vasculitides (HLA-B*51 in Behçet's disease and HLA-B*52 in Takayasu's arteritis (TAK)) and with major clinical and immunological differences. In this study, we aimed to screen a large cohort of TAK patients from Turkey for the presence of HLA-B*51 and HLA-B*52 as susceptibility and severity factors. Methods TAK patients (n = 330) followed at a total of 15 centers were included in the study. The mean age of the patients was 37.8 years, and 86% were women. DNA samples from the patients and healthy controls (HC; n = 210) were isolated, and the presence of HLA-B*51 or HLA-B*52 was screened for by using PCR with sequence-specific primers. Results We found a significant association of HLA-B*52 with TAK (20.9% vs HC = 6.7%, P = 0.000, OR = 3.7, 95% CI = 2.02 to 6.77). The distribution of HLA-B*51 did not differ between TAK patients and HCs (22.7% vs 24.8%, OR = 0.9, 95% CI = 0.60 to 1.34). The presence of HLA-B*52 decreased in late-onset patients (> 40 years of age; 12.0%, P = 0.024, OR = 0.43, 95% CI = 0.20 to 0.91). Patients with angiographic type I disease with limited aortic involvement also had a lower presence of HLA-B*52 compared to those with all other disease subtypes (13.1% vs 26%, P = 0.005, OR = 0.43, 95% CI = 0.23 to 0.78). Conclusions In this study, the previously reported association of TAK with HLA-B*52 in other populations was confirmed in patients from Turkey. The functional relevance of HLA-B*52 in TAK pathogenesis needs to be explored further.PubMedWoSScopu
    corecore