773 research outputs found

    Evolution of the Lyman-alpha Halos around High-Redshift Radio Galaxies

    Full text link
    We have obtained the first constraints on extended Ly-alpha emission at z ~ 1 in a sample of five radio galaxies. We detect Ly-alpha emission from four of the five galaxies. The Ly-alpha luminosities range from 0.1 - 4 times 10^43 erg/s and are much smaller than those observed for halos around higher redshift radio galaxies. If the z ~ 1 radio galaxies are the descendents the z >~ 2 radio galaxies, then their Ly-alpha luminosities evolve strongly with redshift as ~(1+z)^5. There do not appear to be strong correlations between other parameters, such as radio power, suggesting that this observed evolution is real and not an observational artifact or secondary correlation. We speculate that this evolution of luminous halos may be due to gas depletion (as gas cools, settles, and forms stars) accompanied by an overall rise in the mean gas temperature and a decrease in specific star-formation rate in and around these massive galaxies.Comment: 5 pages, 4 figures, published in ApJ Letters, 694, L31-35 March 20 200

    Evidence for Widespread AGN Activity among Massive Quiescent Galaxies at z ~ 2

    Full text link
    We quantify the presence of Active Galactic nuclei (AGN) in a mass-complete (M_* >5e10 M_sun) sample of 123 star-forming and quiescent galaxies at 1.5 < z < 2.5, using X-ray data from the 4 Ms Chandra Deep Field-South (CDF-S) survey. 41+/-7% of the galaxies are detected directly in X-rays, 22+/-5% with rest-frame 0.5-8 keV luminosities consistent with hosting luminous AGN (L_0.5-8keV > 3e42 ergs/s). The latter fraction is similar for star-forming and quiescent galaxies, and does not depend on galaxy stellar mass, suggesting that perhaps luminous AGN are triggered by external effects such as mergers. We detect significant mean X-ray signals in stacked images for both the individually non-detected star-forming and quiescent galaxies, with spectra consistent with star formation only and/or a low luminosity AGN in both cases. Comparing star formation rates inferred from the 2-10 keV luminosities to those from rest-frame IR+UV emission, we find evidence for an X-ray excess indicative of low-luminosity AGN. Among the quiescent galaxies, the excess suggests that as many as 70-100% of these contain low- or high-luminosity AGN, while the corresponding fraction is lower among star-forming galaxies (43-65%). The ubiquitous presence of AGN in massive, quiescent z ~ 2 galaxies that we find provides observational support for the importance of AGN in impeding star formation during galaxy evolution.Comment: 9 pages, 3 figures, 3 tables; Accepted for publication in ApJ. Minor editing changes and a few references added. Matches published versio

    Galaxy pairs as a probe for mergers at z ~ 2

    Full text link
    In this work I investigate the redshift evolution of pair fraction of a sample of 196 massive galaxies from z = 0 to 3, selected from the COSMOS field. We find that on average a massive galaxy undergoes ~ 1.1 \pm 0.5 major merger since z = 3. I will review the current limitations of using the pair fraction as a probe for quantifying the impact of mergers on galaxy evolution. This work is based on the paper Man et al. (2011).Comment: 4 pages; to appear on the Conference Proceedings for "Galaxy Mergers in an Evolving Universe", held in Hualien, Taiwan (October 2011

    SImulator of GAlaxy Millimetre/submillimetre Emission (SIGAME): CO emission from massive z=2 main-sequence galaxies

    Get PDF
    We present SIGAME (SImulator of GAlaxy Millimetre/submillimetre Emission), a new numerical code designed to simulate the 12CO rotational line emission spectrum of galaxies. Using sub-grid physics recipes to post-process the outputs of smoothed particle hydrodynamics (SPH) simulations, a molecular gas phase is condensed out of the hot and partly ionized SPH gas. The gas is subjected to far-UV radiation fields and cosmic ray ionization rates which are set to scale with the local star formation rate volume density. Level populations and radiative transport of the CO lines are solved with the 3-D radiative transfer code LIME. We have applied SIGAME to cosmological SPH simulations of three disc galaxies at z=2 with stellar masses in the range ~(0.5-2)x10^11 Msun and star formation rates ~40-140 Msun/yr. Global CO luminosities and line ratios are in agreement with observations of disc galaxies at z~2 up to and including J=3-2 but falling short of the few existing J=5-4 observations. The central 5 kpc regions of our galaxies have CO 3-2/1-0 and 7-6/1-0 brightness temperature ratios of ~0.55-0.65 and ~0.02-0.08, respectively, while further out in the disc the ratios drop to more quiescent values of ~0.5 and <0.01. Global CO-to-H2 conversion (alpha_CO) factors are ~=1.5 Msun*pc^2/(K km s/1), i.e. ~2-3 times below typically adopted values for disc galaxies, and alpha_CO increases with radius, in agreement with observations of nearby galaxies. Adopting a top-heavy Giant Molecular Cloud (GMC) mass spectrum does not significantly change the results. Steepening the GMC density profile leads to higher global line ratios for J_up>=3 and CO-to-H2 conversion factors [~=3.6 Msun*pc^2/(K km/s)].Comment: 28 pages, 20 figures. Accepted for Publication in MNRAS. Substantial revisions from the previous version, including tests with model galaxies similar to the Milky Way. Improved figures and added table

    Structure of Protocluster Galaxies: Accelerated Structural Evolution in Overdense Environments?

    Full text link
    We present a high spatial-resolution HST/NICMOS imaging survey in the field of a known protocluster surrounding the powerful radio galaxy MRC1138-262 at z=2.16. Previously, we have shown that this field exhibits a substantial surface overdensity of red J-H galaxies. Here we focus on the stellar masses and galaxy effective radii in an effort to compare and contrast the properties of likely protocluster galaxies with their field counterparts and to look for correlations between galaxy structure and (projected) distance relative to the radio galaxy. We find a hint that quiescent, cluster galaxies are on average less dense than quiescent field galaxies of similar stellar mass and redshift. In fact, we find only two (of nine) quiescent protocluster galaxies are of simliar density to the majority of the massive, quiescent compact galaxies (SEEDs) found in several field surveys. Furthermore, there is some indication that the structural Sersic n parameter is higher (n ~ 3-4) on average for cluster galaxies compared to the field SEEDs (n ~ 1-2) This result may imply that the accelerated galaxy evolution expected (and observed) in overdense regions also extends to structural evolution presuming that massive galaxies began as dense (low n) SEEDs and have already evolved to be more in line with local galaxies of the same stellar mass.Comment: 11 pages, 7 figures, 1 table, Accepted for publication in Ap

    A spectroscopic sample of massive, evolved z~2 galaxies: Implications for the evolution of the mass-size relation

    Full text link
    We present deep, near-infrared HST/WFC3 grism spectroscopy and imaging for a sample of 14 galaxies at z~2 selected from a mass-complete photometric catalog in the COSMOS field. By combining the grism observations with photometry in 30 bands, we derive accurate constraints on their redshifts, stellar masses, ages, dust extinction and formation redshifts. We show that the slope and scatter of the z~2 mass-size relation of quiescent galaxies is consistent with the local relation, and confirm previous findings that the sizes for a given mass are smaller by a factor of two to three. Finally, we show that the observed evolution of the mass-size relation of quiescent galaxies between z=2 and 0 can be explained by quenching of increasingly larger star-forming galaxies, at a rate dictated by the increase in the number density of quiescent galaxies with decreasing redshift. However, we find that the scatter in the mass-size relation should increase in the quenching-driven scenario in contrast to what is seen in the data. This suggests that merging is not needed to explain the evolution of the median mass-size relation of massive galaxies, but may still be required to tighten its scatter, and explain the size growth of individual z=2 galaxies quiescent galaxies.Comment: 16 pages, 8 figures, accepted for publication in the Astrophysical Journa

    Stellar Masses of Lyman Break Galaxies, Lyman Alpha Emitters and Radio Galaxies in Overdense Regions at z=4-6

    Full text link
    We present new information on galaxies in the vicinity of luminous radio galaxies and quasars at z=4,5,6. These fields were previously found to contain overdensities of Lyman Break Galaxies (LBGs) or spectroscopic Lyman alpha emitters. We use HST and Spitzer data to infer stellar masses, and contrast our results with large samples of LBGs in more average environments as probed by the Great Observatories Origins Deep Survey (GOODS). The following results were obtained. First, LBGs in both overdense regions and in the field at z=4-5 lie on a very similar sequence in a z'-[3.6] versus [3.6] color-magnitude diagram. This is interpreted as a sequence in stellar mass (log[M*/Msun] = 9-11) in which galaxies become increasingly red due to dust and age as their star formation rate (SFR) increases. Second, the two radio galaxies are among the most massive objects (log[M*/Msun]~11) known to exist at z~4-5, and are extremely rare based on the low number density of such objects as estimated from the ~25x larger area GOODS survey. We suggest that the presence of these massive galaxies and supermassive black holes has been boosted through rapid accretion of gas or merging inside overdense regions. Third, the total stellar mass found in the z=4 ``proto-cluster'' TN1338 accounts for <30% of the stellar mass on the cluster red sequence expected to have formed at z>4, based on a comparison with the massive X-ray cluster Cl1252 at z=1.2. Although future near-infrared observations should determine whether any massive galaxies are currently being missed, one possible explanation for this mass difference is that TN1338 evolves into a smaller cluster than Cl1252. This raises the interesting question of whether the most massive protocluster regions at z>4 remain yet to be discovered.Comment: The Astrophysical Journal, In Press (17 pages, 7 figures

    The growth and assembly of a massive galaxy at z ~ 2

    Full text link
    We study the stellar mass assembly of the Spiderweb Galaxy (MRC 1138-262), a massive z = 2.2 radio galaxy in a protocluster and the probable progenitor of a brightest cluster galaxy. Nearby protocluster galaxies are identified and their properties are determined by fitting stellar population models to their rest-frame ultraviolet to optical spectral energy distributions. We find that within 150 kpc of the radio galaxy the stellar mass is centrally concentrated in the radio galaxy, yet most of the dust-uncorrected, instantaneous star formation occurs in the surrounding low-mass satellite galaxies. We predict that most of the galaxies within 150 kpc of the radio galaxy will merge with the central radio galaxy by z = 0, increasing its stellar mass by up to a factor of ~ 2. However, it will take several hundred Myr for the first mergers to occur, by which time the large star formation rates are likely to have exhausted the gas reservoirs in the satellite galaxies. The tidal radii of the satellite galaxies are small, suggesting that stars and gas are being stripped and deposited at distances of tens of kpc from the central radio galaxy. These stripped stars may become intracluster stars or form an extended stellar halo around the radio galaxy, such as those observed around cD galaxies in cluster cores.Comment: 12 pages, accepted for publication in MNRA

    On the formation time scale of massive cluster ellipticals based on deep near-IR spectroscopy at z~2

    Full text link
    We present improved constraints on the formation time scale of massive cluster galaxies based on rest-frame optical spectra of galaxies in a forming cluster located at z=2.16. The spectra are obtained with MOIRCS on the Subaru telescope with an integration time of ~7 hours. We achieve accurate redshift measurements by fitting SEDs using the spectra and broad-band photometry simultaneously, allowing us to identify probable cluster members. Clusters at low redshifts are dominated by quiescent galaxies, but we find that quiescent galaxies and star forming galaxies co-exist in this z=2 system. Interestingly, the quiescent galaxies form a weak red sequence in the process of forming. By stacking the spectra of star forming galaxies, we observe strong emission lines such as [OII] and [OIII] and we obtain a tentative hint of AGN activities in these galaxies. On the other hand, the stacked spectrum of the quiescent galaxies reveals a clear 4000A break with a possible CaII H+K absorption feature and strong emission lines such as [OII] are absent in the spectrum, confirming the quiescent nature of these galaxies. We then perform detailed spectral analyses of the stacked spectrum, which suggest that these massive quiescent galaxies formed at redshifts between 3 and 4 on a time scale of <~0.5 Gyr. This short formation time scale is not reproduced in recent numerical simulations. We discuss possible mechanisms for how these galaxies form 10^11 Msun stellar mass on a short time scale and become red and quiescent by z=2.Comment: 17 pages, 14 figures, accepted for publication in Ap

    RXJ0848.6+4453: The Evolution of Galaxy Sizes and Stellar Populations in a z=1.27 Cluster

    Full text link
    RXJ0848.6+4453 (Lynx W) at redshift 1.27 is part of the Lynx Supercluster of galaxies. Our analysis of stellar populations and star formation history in the cluster covers 24 members and is based on deep optical spectroscopy from Gemini North and imaging data from HST. Focusing on the 13 bulge-dominated galaxies for which we can determine central velocity dispersions, we find that these show a smaller evolution of sizes and velocity dispersions than reported for field galaxies and galaxies in poorer clusters. The galaxies in RXJ0848.6+4453 populate the Fundamental Plane similar to that found for lower redshift clusters with a zero point offset corresponding to an epoch of last star formation at z_form= 1.95+-0.2. The spectra of the galaxies in RXJ0848.6+4453 are dominated by young stellar populations at all galaxy masses and in many cases show emission indicating low level on-going star formation. The average age of the young stellar populations (estimated from H-zeta) is consistent with a major star formation episode 1-2 Gyr prior, which in turn agrees with z_form=1.95. Galaxies dominated by young stellar populations are distributed throughout the cluster. We speculate that low level star formation has not yet been fully quenched in the center of this cluster may be because the cluster is significantly poorer than other clusters previously studied at similar redshifts, which appear to have very little on-going star formation in their centers.Comment: Accepted for publication in Astronomical Journal. High-resolution figures available from the first author by reques
    corecore