1,154 research outputs found

    Electrostatic Steering Accelerates C3d:CR2 Association.

    Get PDF
    Electrostatic effects are ubiquitous in protein interactions and are found to be pervasive in the complement system as well. The interaction between complement fragment C3d and complement receptor 2 (CR2) has evolved to become a link between innate and adaptive immunity. Electrostatic interactions have been suggested to be the driving factor for the association of the C3d:CR2 complex. In this study, we investigate the effects of ionic strength and mutagenesis on the association of C3d:CR2 through Brownian dynamics simulations. We demonstrate that the formation of the C3d:CR2 complex is ionic strength-dependent, suggesting the presence of long-range electrostatic steering that accelerates the complex formation. Electrostatic steering occurs through the interaction of an acidic surface patch in C3d and the positively charged CR2 and is supported by the effects of mutations within the acidic patch of C3d that slow or diminish association. Our data are in agreement with previous experimental mutagenesis and binding studies and computational studies. Although the C3d acidic patch may be locally destabilizing because of unfavorable Coulombic interactions of like charges, it contributes to the acceleration of association. Therefore, acceleration of function through electrostatic steering takes precedence to stability. The site of interaction between C3d and CR2 has been the target for delivery of CR2-bound nanoparticle, antibody, and small molecule biomarkers, as well as potential therapeutics. A detailed knowledge of the physicochemical basis of C3d:CR2 association may be necessary to accelerate biomarker and drug discovery efforts

    Human complement control and complement evasion by pathogenic microbes - Tipping the balance

    Get PDF
    Complement is a central homeotic system of mammals and represents the first defense line of innate immunity. The human complement system is aimed to maintain homeostasis by recognizing and removing damaged or modified self material, as well as infectious foreign microbes. However, pathogenic microbes also control and escape the host complement and immune attack. The increasing resistance of microbial pathogens to either antibiotics or antifungal drugs is a major health problem and is of global interest. Therefore the topic how pathogenic microbes escape human complement and immune control is of high and of central interest. Identifying and defining the action of proteins involved in this intense immune interaction and understanding how these proteins interact is of relevance to design new control strategies. In this review we summarize the complement system of the human host and how this cascade drives effector functions. In addition, we summarize how diverse pathogenic microbes control, modulate and block the complement response of their host. The characterization of pathogen derived virulence factors and complement escape proteins reveals patterns of multiplicity, diversity and redundancy among pathogen encoded proteins. Sequence variability of immune and also complement escape proteins is largely driven by antigenic diversity and adaptive immunity. However common complement escape principles are, emerging in terms of conserved binding repertoire for host regulators and evasion among the large variety of infectious microbes. These conserved and common escape features are relevant and they provide challenging options for new therapeutic approaches. (C) 2013 Elsevier Ltd. All rights reserved

    Staphylococcus aureus proteins Sbi and Efb recruit human plasmin to degrade complement C3 and C3b

    Get PDF
    Upon host infection, the human pathogenic microbe Staphylococcus aureus (S. aureus) immediately faces innate immune reactions such as the activated complement system. Here, a novel innate immune evasion strategy of S. aureus is described. The staphylococcal proteins surface immunoglobulin-binding protein (Sbi) and extracellular fibrinogen-binding protein (Efb) bind C3/C3b simultaneously with plasminogen. Bound plasminogen is converted by bacterial activator staphylokinase or by host-specific urokinase-type plasminogen activator to plasmin, which in turn leads to degradation of complement C3 and C3b. Efb and to a lesser extend Sbi enhance plasmin cleavage of C3/C3b, an effect which is explained by a conformational change in C3/C3b induced by Sbi and Efb. Furthermore, bound plasmin also degrades C3a, which exerts anaphylatoxic and antimicrobial activities. Thus, S. aureus Sbi and Efb comprise platforms to recruit plasmin(ogen) together with C3 and its activation product C3b for efficient degradation of these complement components in the local microbial environment and to protect S. aureus from host innate immune reactions

    Host-pathogen interactions between the human innate immune system and Candida albicans—understanding and modeling defense and evasion strategies

    Get PDF
    The diploid, polymorphic yeast Candida albicans is one of the most important humanpathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within thehuman host for a long time. Alterations in the host environment, however, can render C. albicansvirulent. In this review, we describe the immunological cross-talk between C. albicans and thehuman innate immune system. We give an overview in form of pairs of human defense strategiesincluding immunological mechanisms as well as general stressors such as nutrient limitation,pH, fever etc. and the corresponding fungal response and evasion mechanisms. FurthermoreComputational Systems Biology approaches to model and investigate these complex interactionare highlighted with a special focus on game-theoretical methods and agent-based models. Anoutlook on interesting questions to be tackled by Systems Biology regarding entangled defenseand evasion mechanisms is given

    How Does Complement Affect Hematological Malignancies: From Basic Mechanisms to Clinical Application

    Get PDF
    Complement, as a central immune surveillance system, can be activated within seconds upon stimulation, thereby displaying multiple immune effector functions. However, in pathologic scenarios (like in tumor progression), activated complement can both display protective effects to control tumor development and passively promotes the tumor growth. Clinical investigations show that patients with several hematological malignancies often display abnormal level of specific complement components, which in turn modulates complement activation or deregulated cascade. In the past decades, complement-dependent cytotoxicity and complement-dependent cell-mediated phagocytosis were fully approved to display vital roles in monoclonal antibody-based immunotherapies, especially in therapies against hematological malignancies. However, tumor-mediated complement evasion presents a big challenge for such a therapy. This review aims to provide an integrative overview on the roles of the complement in tumor promotion, highlights complement mediated effects on antibody-based immunotherapy against distinct hematological tumors, hopefully provides a theoretical basis for the development of complement-based cancer targeted therapies

    An Interdisciplinary Diagnostic Approach to Guide Therapy in C3 Glomerulopathy

    Get PDF
    Since the re-classification of membranoproliferative glomerulonephritis the new disease entity C3 glomerulopathy is diagnosed if C3 deposition is clearly dominant over immunoglobulins in immunohistochemistry or immunofluorescence. Although this new definition is more orientated at the pathophysiology as mediated by activity of the alternative complement pathway C3 glomerulopathy remains a heterogenous group of disorders. Genetic or autoimmune causes are associated in several but not in all patients with this disease. However, prognosis is poorly predictable, and clinicians cannot directly identify patients that might benefit from therapy. Moreover, therapy may range from supportive care alone, unspecific immune suppression, plasma treatment, or plasma exchange to complement inhibition. The current biopsy based diagnostic approaches sometimes combined with complement profiling are not sufficient to guide clinicians neither (i) whether to treat an individual patient, nor (ii) to choose the best therapy. With this perspective, we propose an interdisciplinary diagnostic approach, including detailed analysis of the kidney biopsy for morphological alterations and immunohistochemical staining, for genetic analyses of complement genes, complement activation patterning in plasma, and furthermore for applying novel approaches for convertase typing and complement profiling directly in renal tissue. Such a combined diagnostic approach was used here for a 42-year-old female patient with a novel mutation in the Factor H gene, C3 glomerulopathy and signs of chronic endothelial damage. We present here an approach that might in future help to guide therapy of renal diseases with relevant complement activation, especially since diverse new anti-complement agents are under clinical investigation

    Contribution of the Infection-Associated Complement Regulator-Acquiring Surface Protein 4 (ErpC) to Complement Resistance of Borrelia burgdorferi

    Get PDF
    Borrelia burgdorferi evades complement-mediated killing by interacting with complement regulators through distinct complement regulator-acquiring surface proteins (CRASPs). Here, we extend our analyses to the contribution of CRASP-4 in mediating complement resistance of B. burgdorferi and its interaction with human complement regulators. CRASP-4 (also known as ErpC) was immobilized onto magnetic beads and used to capture proteins from human serum. Following Western blotting, factor H (CFH), CFH-related protein 1 (CFHR1), CFHR2, and CFHR5 were identified as ligands of CRASP-4. To analyze the impact of native CRASP-4 on mediating survival of serum-sensitive cells in human serum, a B. garinii strain was generated that ectopically expresses CRASP-4. CRASP-4-producing bacteria bound CFHR1, CFHR2, and CFHR5 but not CFH. In addition, transformed spirochetes deposited significant amounts of lethal complement components on their surface and were susceptible to human serum, thus indicating that CRASP-4 plays a subordinate role in complement resistance of B. burgdorferi

    Identification and functional characterisation of Complement Regulator Acquiring Surface Protein-1 of serum resistant Borrelia garinii OspA serotype 4

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>B. burgdorferi </it>sensu lato (sl) is the etiological agent of Lyme borreliosis in humans. Spirochetes have adapted themselves to the human immune system in many distinct ways. One important immune escape mechanism for evading complement activation is the binding of complement regulators Factor H (CFH) or Factor H-like protein1 (FHL-1) to Complement Regulator-Acquiring Surface Proteins (CRASPs).</p> <p>Results</p> <p>We demonstrate that <it>B. garinii </it>OspA serotype 4 (ST4) PBi resist complement-mediated killing by binding of FHL-1. To identify the primary ligands of FHL-1 four CspA orthologs from <it>B. garinii </it>ST4 PBi were cloned and tested for binding to human CFH and FHL-1. Orthologs BGA66 and BGA71 were found to be able to bind both complement regulators but with different intensities. In addition, all CspA orthologs were tested for binding to mammalian and avian CFH. Distinct orthologs were able to bind to CFH of different animal origins.</p> <p>Conclusions</p> <p><it>B. garinii </it>ST4 PBi is able to evade complement killing and it can bind FHL-1 to membrane expressed proteins. Recombinant proteins BGA66 can bind FHL-1 and human CFH, while BGA71 can bind only FHL-1. All recombinant CspA orthologs from <it>B. garinii </it>ST4 PBi can bind CFH from different animal origins. This partly explains the wide variety of animals that can be infected by <it>B. garinii</it>.</p
    corecore