5,843 research outputs found

    Winter Ecosystem Respiration and Sources of CO2 From the High Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment

    Get PDF
    Currently, there is a lack of understanding on how the magnitude and sources of carbon (C) emissions from High Arctic tundra are impacted by changing snow cover duration and depth during winter. Here we investigated this issue in a graminoid tundra snow fence experiment on shale-derived gelisols in Svalbard from the end of the growing season and throughout the winter. To characterize emissions, we measured ecosystem respiration (Reco) along with its radiocarbon (14C) content. We assessed the composition of soil organic matter (SOM) by measuring its bulk-C and nitrogen (N), 14C content, and n-alkane composition. Our findings reveal that greater snow depth increased soil temperatures and winter Reco (25 mg C m−2 d−1 under deeper snow compared to 13 mg C m−2 d−1 in ambient conditions). At the end of the growing season, Reco was dominated by plant respiration and microbial decomposition of C fixed within the past 60 years (Δ14C = 62 ± 8‰). During winter, emissions were significantly older (Δ14C = −64 ± 14‰), and likely sourced from microorganisms decomposing aged SOM formed during the Holocene mixed with biotic or abiotic mineralization of the carbonaceous, fossil parent material. Our findings imply that snow cover duration and depth is a key control on soil temperatures and thus the magnitude of Reco in winter. We also show that in shallow Arctic soils, mineralization of carbonaceous parent materials can contribute significant proportions of fossil C to Reco. Therefore, permafrost-C inventories informing C emission projections must carefully distinguish between more vulnerable SOM from recently fixed biomass and more recalcitrant ancient sedimentary C sources

    Modeling the distribution of the arrival angle based on transmitter antenna pattern

    Full text link
    An angular distribution of received signals has a significant impact on their spectral and correlational properties. Most of angular dispersion models do not consider antenna patterns. The developed procedure for determining the propagation path parameters enables a wide range of assessment of the impact of the propagation environment on the received signal properties. In contrast to the other models, this procedure is based on a geometrical structure, which parameters are defined on the basis of power delay profile or spectrum This modeling method allows also the power radiation pattern (PRP) of the transmitting antenna. The aim of the paper is to present the influence of the transmitter antenna PRP on the scattering propagation paths that arrive at the receiver. This analysis is realized on the basis of simulations studies using the developed procedure. Presented in this paper procedure maps the effects of propagation phenomena that predominate in an azimuth plane.Comment: 5 pages, 8 figure

    On the formation and evolution of the first Be star in a black hole binary MWC 656

    Get PDF
    We find that the formation of MWC 656 (the first Be binary containing a black hole) involves a common envelope phase and a supernova explosion. This result supports the idea that a rapidly rotating Be star can emerge out of a common envelope phase, which is very intriguing because this evolutionary stage is thought to be too fast to lead to significant accretion and spin up of the B star. We predict 10100\sim 10-100 of B BH binaries to currently reside in the Galactic disk, among which around 1/31/3 contain a Be star, but there is only a small chance to observe a system with parameters resembling MWC 656. If MWC 656 is representative of intrinsic Galactic Be BH binary population, it may indicate that standard evolutionary theory needs to be revised. This would pose another evolutionary problem in understanding BH binaries, with BH X-ray Novae formation issue being the prime example. The future evolution of MWC 656 with a 5\sim 5 M_{\odot} black hole and with a 13\sim 13 M_{\odot} main sequence companion on a 60\sim 60 day orbit may lead to the formation of a coalescing BH-NS system. The estimated Advanced LIGO/Virgo detection rate of such systems is up to 0.2\sim 0.2 yr1^{-1}. This empirical estimate is a lower limit as it is obtained with only one particular evolutionary scenario, the MWC 656 binary. This is only a third such estimate available (after Cyg X-1 and Cyg X-3), and it lends additional support to the existence of so far undetected BH--NS binaries.Comment: revised and extended version after MNRAS review 17 pages, 10 figure

    Limits on the amplification of evanescent waves of left-handed materials

    Full text link
    We investigate the transfer function of the discretized perfect lens in finite-difference time-domain (FDTD) and transfer matrix (TMM) simulations; the latter allow to eliminate the problems associated with the explicit time dependence in FDTD simulations. We argue that the peak observed in the FDTD transfer function near the maximum parallel momentum k,maxk_{\|,\mathrm{max}} is due to finite time artifacts. We also find the finite discretization mesh acts like imaginary deviations from μ=ϵ=1\mu=\epsilon=-1 and leads to a cross-over in the transfer function from constance to exponential decay around k,maxk_{\|,\mathrm{max}} limiting the attainable super-resolution. We propose a simple qualitative model to describe the impact of the discretization. k,maxk_{\|,\mathrm{max}} is found to depend logarithmically on the mesh constant in qualitative agreement with the TMM simulations.Comment: 4 pages, 3 figure

    The new radiation-hard optical links for the ATLAS pixel detector

    Full text link
    The ATLAS detector is currently being upgraded with a new layer of pixel based charged particle tracking and a new arrangement of the services for the pixel detector. These upgrades require the replacement of the opto-boards previously used by the pixel detector. In this report we give details on the design and production of the new opto-boards.Comment: Presentation at the DPF 2013 Meeting of the American Physical Society Division of Particles and Fields, Santa Cruz, California, August 13-17, 201

    Numerical Study of Wave Propagation in Uniaxially Anisotropic Lorentzian Backward Wave Slabs

    Full text link
    The propagation and refraction of a cylindrical wave created by a line current through a slab of backward wave medium, also called left-handed medium, is numerically studied with FDTD. The slab is assumed to be uniaxially anisotropic. Several sets of constitutive parameters are considered and comparisons with theoretical results are made. Electric field distributions are studied inside and behind the slab. It is found that the shape of the wavefronts and the regions of real and complex wave vectors are in agreement with theoretical results.Comment: 6 pages, figure

    A clickable oxysterol photolabel retains NMDA receptor activity and accumulates in neurons

    Get PDF
    Oxysterol analogs that modulate NMDA receptor function are candidates for therapeutic development to treat neuropsychiatric disorders. However, the cellular actions of these compounds are still unclear. For instance, how these compounds are compartmentalized or trafficked in neurons is unknown. In this study, we utilized a chemical biology approach combining photolabeling and click chemistry. We introduce a biologically active oxysterol analog that contains: (1) a diazirine group, allowing for the permanent labeling of cellular targets, and (2) an alkyne group, allowing for subsequent in situ visualization using Cu2+ catalyzed cycloaddition of an azide-conjugated fluorophore. The physiological properties of this analog at NMDA receptors resemble those of other oxysterols, including occlusion with other oxysterol-like compounds. Fluorescent imaging reveals that the analog accumulates diffusely in the cytoplasm of neurons through an energy-independent mechanism. Overall, this work introduces a novel chemical biology approach to investigate oxysterol actions and introduces a tool useful for further cell biological and biochemical studies of oxysterols.</p
    corecore