98 research outputs found

    In vitro and in vivo selection of potentially probiotic lactobacilli from Nocellara del Belice table olives

    Get PDF
    Table olives are increasingly recognized as a vehicle as well as a source of probiotic bacteria, especially those fermented with traditional procedures based on the activity of indigenous microbial consortia, originating from local environments. In the present study, we report characterization at the species level of 49 Lactic Acid Bacteria (LAB) strains deriving from Nocellara del Belice table olives fermented with the Spanish or Castelvetrano methods, recently isolated in our previous work. Ribosomal 16S DNA analysis allowed identification of 4 Enterococcus gallinarum, 3 E. casseliflavus, 14 Leuconostoc mesenteroides, 19 Lactobacillus pentosus, 7 L. coryniformis, and 2 L. oligofermentans. The L. pentosus and L. coryniformis strains were subjected to further screening to evaluate their probiotic potential, using a combination of in vitro and in vivo approaches. The majority of them showed high survival rates under in vitro simulated gastro-intestinal conditions, and positive antimicrobial activity against Salmonella enterica serovar Typhimurium, Listeria monocytogenes and enterotoxigenic Escherichia coli (ETEC) pathogens. Evaluation of antibiotic resistance to ampicillin, tetracycline, chloramphenicol, or erythromycin was also performed for all selected strains. Three L. coryniformis strains were selected as very good performers in the initial in vitro testing screens, they were antibiotic susceptible, as well as capable of inhibiting pathogen growth in vitro. Parallel screening employing the simplified model organism Caenorhabditis elegans, fed the Lactobacillus strains as a food source, revealed that one L. pentosus and one L. coryniformis strains significantly induced prolongevity effects and protection from pathogen-mediated infection. Moreover, both strains displayed adhesion to human intestinal epithelial Caco-2 cells and were able to outcompete foodborne pathogens for cell adhesion. Overall, these results are suggestive of beneficial features for novel LAB strains, which renders them promising candidates as starters for the manufacturing of fermented table olives with probiotic added value

    The Long and Winding Road to Cardiac Regeneration

    Get PDF
    Cardiac regeneration is a critical endeavor in the treatment of heart diseases, aimed at repairing and enhancing the structure and function of damaged myocardium. This review offers a comprehensive overview of current advancements and strategies in cardiac regeneration, with a specific focus on regenerative medicine and tissue engineering-based approaches. Stem cell-based therapies, which involve the utilization of adult stem cells and pluripotent stem cells hold immense potential for replenishing lost cardiomyocytes and facilitating cardiac tissue repair and regeneration. Tissue engineering also plays a prominent role employing synthetic or natural biomaterials, engineering cardiac patches and grafts with suitable properties, and fabricating upscale bioreactors to create functional constructs for cardiac recovery. These constructs can be transplanted into the heart to provide mechanical support and facilitate tissue healing. Additionally, the production of organoids and chips that accurately replicate the structure and function of the whole organ is an area of extensive research. Despite significant progress, several challenges persist in the field of cardiac regeneration. These include enhancing cell survival and engraftment, achieving proper vascularization, and ensuring the long-term functionality of engineered constructs. Overcoming these obstacles and offering effective therapies to restore cardiac function could improve the quality of life for individuals with heart diseases

    Cardiovascular Response to Intraneural Right Vagus Nerve Stimulation in Adult Minipig.

    Get PDF
    Objective: This study explored intraneural stimulation of the right thoracic vagus nerve (VN) in sexually mature male minipigs to modulate safe heart rate and blood pressure response. Material and methods: We employed an intraneural electrode designed for the VN of pigs to perform VN stimulation (VNS). This was delivered using different numbers of contacts on the electrode and different stimulation parameters (amplitude, frequency, and pulse width), identifying the most suitable stimulation configuration. All the parameter ranges had been selected from a computational cardiovascular system model. Results: Clinically relevant responses were observed when stimulating with low current intensities and relatively low frequencies delivered with a single contact. Selecting a biphasic, charge-balanced square wave for VNS with a current amplitude of 500 μA, frequency of 10 Hz, and pulse width of 200 μs, we obtained heart rate reduction of 7.67 ± 5.19 beats per minute, systolic pressure reduction of 5.75 ± 2.59 mmHg, and diastolic pressure reduction of 3.39 ± 1.44 mmHg. Conclusion: Heart rate modulation was obtained without inducing any observable adverse effects, underlining the high selectivity of the intraneural approach

    A multi-channel stimulator with an active electrode array implant for vagal-cardiac neuromodulation studies.

    Get PDF
    Background: Implantable vagus nerve stimulation is a promising approach for restoring autonomic cardiovascular functions after heart transplantation. For successful treatment a system should have multiple electrodes to deliver precise stimulation and complex neuromodulation patterns. Methods: This paper presents an implantable multi-channel stimulation system for vagal-cardiac neuromodulation studies in swine species. The system comprises an active electrode array implant percutaneously connected to an external wearable controller. The active electrode array implant has an integrated stimulator ASIC mounted on a ceramic substrate connected to an intraneural electrode array via micro-rivet bonding. The implant is silicone encapsulated for biocompatibility and implanted lifetime. The stimulation parameters are remotely transmitted via a Bluetooth telemetry link. Results: The size of the encapsulated active electrode array implant is 8 mm × 10 mm × 3 mm. The stimulator ASIC has 10-bit current amplitude resolution and 16 independent output channels, each capable of delivering up to 550 μA stimulus current and a maximum voltage of 20 V. The active electrode array implant was subjected to in vitro accelerated lifetime testing at 70 °C for 7 days with no degradation in performance. After over 2 h continuous stimulation, the surface temperature change of the implant was less than 0.5 °C. In addition, in vivo testing on the sciatic nerve of a male Göttingen minipig demonstrated that the implant could effectively elicit an EMG response that grew progressively stronger on increasing the amplitude of the stimulation. Conclusions: The multi-channel stimulator is suitable for long term implantation. It shows potential as a useful tool in vagal-cardiac neuromodulation studies in animal models for restoring autonomic cardiovascular functions after heart transplantation

    Implementation of an epicardial implantable MEMS sensor for continuous and real-time postoperative assessment of left ventricular activity in adult minipigs over a short- and long-term period

    Get PDF
    The sensing of left ventricular (LV) activity is fundamental in the diagnosis and monitoring of cardiovascular health in high-risk patients after cardiac surgery to achieve better short- and long-term outcome. Conventional approaches rely on noninvasive measurements even if, in the latest years, invasive microelectromechanical systems (MEMS) sensors have emerged as a valuable approach for precise and continuous monitoring of cardiac activity. The main challenges in designing cardiac MEMS sensors are represented by miniaturization, biocompatibility, and long-term stability. Here, we present a MEMS piezoresistive cardiac sensor capable of continuous monitoring of LV activity over time following epicardial implantation with a pericardial patch graft in adult minipigs. In acute and chronic scenarios, the sensor was able to compute heart rate with a root mean square error lower than 2 BPM. Early after up to 1 month of implantation, the device was able to record the heart activity during the most important phases of the cardiac cycle (systole and diastole peaks). The sensor signal waveform, in addition, closely reflected the typical waveforms of pressure signal obtained via intraventricular catheters, offering a safer alternative to heart catheterization. Furthermore, histological analysis of the LV implantation site following sensor retrieval revealed no evidence of myocardial fibrosis. Our results suggest that the epicardial LV implantation of an MEMS sensor is a suitable and reliable approach for direct continuous monitoring of cardiac activity. This work envisions the use of this sensor as a cardiac sensing device in closed-loop applications for patients undergoing heart surgery

    Geodetic model of the 2016 Central Italy earthquake sequence inferred from InSAR and GPS data

    Get PDF
    We investigate a large geodetic data set of interferometric synthetic aperture radar (InSAR)and GPS measurements to determine the source parameters for the three main shocks of the 2016Central Italy earthquake sequence on 24 August and 26 and 30 October (Mw6.1, 5.9, and 6.5,respectively). Our preferred model is consistent with the activation of four main coseismic asperitiesbelonging to the SW dipping normal fault system associated with the Mount Gorzano-Mount Vettore-Mount Bove alignment. Additional slip, equivalent to aMw~ 6.1–6.2 earthquake, on a secondary (1) NEdipping antithetic fault and/or (2) on a WNW dipping low-angle fault in the hanging wall of the mainsystem is required to better reproduce the complex deformation pattern associated with the greatestseismic event (theMw6.5 earthquake). The recognition of ancillary faults involved in the sequencesuggests a complex interaction in the activated crustal volume between the main normal faults and thesecondary structures and a partitioning of strain releas

    The effect of seasoning with herbs on the nutritional, safety and sensory properties of reduced-sodium fermented Cobrançosa cv. table olives

    Get PDF
    This study aimed at evaluating the effectiveness of seasoning Cobrancosa table olives in a brine with aromatic ingredients, in order to mask the bitter taste given by KCl when added to reduced-sodium fermentation brines. Olives were fermented in two different salt combinations: Brine A, containing 8% NaCl and, Brine B, a reduced-sodium brine, containing 4% NaCl + 4% KCl. After the fermentation the olives were immersed in seasoning brines with NaCl (2%) and the aromatic herbs (thyme, oregano and calamintha), garlic and lemon. At the end of the fermentation and two weeks after seasoning, the physicochemical, nutritional, organoleptic, and microbiological parameters, were determined. The olives fermented in the reduced-sodium brines had half the sodium concentration, higher potassium and calcium content, a lower caloric level, but were considered, by a sensorial panel, more bitter than olives fermented in NaCl brine. Seasoned table olives, previously fermented in Brine A and Brine B, had no significant differences in the amounts of protein (1.23% or 1.11%), carbohydrates (1.0% or 0.66%), fat (20.0% or 20.5%) and dietary fiber (3.4% or 3.6%). Regarding mineral contents, the sodium-reduced fermented olives, presented one third of sodium, seven times more potassium and three times more calcium than the traditional olives fermented in 8% NaCl. Additionally, according to the panelists' evaluation, seasoning the olives fermented in 4% NaCl + 4% KCl, resulted in a decrease in bitterness and an improvement in the overall evaluation and flavor. Escherichia coli and Salmonella were not found in the olives produced.info:eu-repo/semantics/publishedVersio

    The 21 August 2017 Ischia (Italy) Earthquake Source Model Inferred From Seismological, GPS, and DInSAR Measurements

    Get PDF
    The causative source of the first damaging earthquake instrumentally recorded in the Island of Ischia, occurred on 21 August 2017, has been studied through a multiparametric geophysical approach. In order to investigate the source geometry and kinematics we exploit seismological, Global Positioning System, and Sentinel-1 and COSMO-SkyMed differential interferometric synthetic aperture radar coseismic measurements. Our results indicate that the retrieved solutions from the geodetic data modeling and the seismological data are plausible; in particular, the best fit solution consists of an E-W striking, south dipping normal fault, with its center located at a depth of 800 m. Moreover, the retrieved causative fault is consistent with the rheological stratification of the crust in this zone. This study allows us to improve the knowledge of the volcano-tectonic processes occurring on the Island, which is crucial for a better assessment of the seismic risk in the area.Published2193-22023T. Sorgente sismicaJCR Journa

    Comment on “The 21 August 2017 M d 4.0 Casamicciola Earthquake: First Evidence of Coseismic Normal Surface Faulting at the Ischia Volcanic Island” by

    Get PDF
    We are writing this comment because many aspects of the analysis presented by Nappi et al. (2018) are debatable. In particular, a major issue is relevant to the conclusion suggested by Nappi et al. (2018) about a seismogenic normal fault with northward dip. This finding is not well‐founded because the authors do not really present a causative source model. In addition, their statement is clearly not consistent with the Differential Interferometric Synthetic Aperture Radar (DInSAR), Global Positioning System (GPS) and seismological measurements presented in the article previously published by De Novellis et al. (2018). Moreover, we also report an evident error in the geologic map proposed by Nappi et al. (2018, their fig. 3).Published313-3156V. Pericolosità vulcanica e contributi alla stima del rischioJCR Journa

    DInSAR Analysis and Analytical Modeling of Mount Etna Displacements: The December 2018 Volcano‐Tectonic Crisis

    Get PDF
    We investigate the 24–27 December 2018 eruption of Mount Etna occurred from fissures located on the volcano eastern flank and accompanied by a seismic swarm, which was triggered by the magma intrusion and continued for weeks after the end of the eruption. Moreover, this swarm involved some of the shallow volcano‐tectonic structures located on the Mount Etna flanks and culminated on 26 December with the strongest event (ML 4.8), occurred along the Fiandaca Fault. In this work, we analyze seismological data and Sentinel‐1 Differential Interferometric Synthetic Aperture Radar (DInSAR) measurements, the latter inverted through analytical modeling. Our results suggest that a dike source intruded, promoting the opening of the eruptive fissures fed by a shallower dike. Moreover, our findings indicate that the activation of faults in different sectors of the volcano may be considered as a response to accommodate the deformations induced by the magma volumes injection.Published5817-58275V. Processi eruttivi e post-eruttiviJCR Journa
    corecore