
The 21 August 2017 Ischia (Italy) Earthquake Source
Model Inferred From Seismological, GPS,
and DInSAR Measurements
V. De Novellis1 , S. Carlino2 , R. Castaldo1 , A. Tramelli2 , C. De Luca1, N. A. Pino2 ,
S. Pepe1 , V. Convertito2 , I. Zinno1, P. De Martino2, M. Bonano3 , F. Giudicepietro2, F. Casu1 ,
G. Macedonio2 , M. Manunta1 , C. Cardaci4, M. Manzo1 , D. Di Bucci4, G. Solaro1 , G. Zeni1,
R. Lanari1 , F. Bianco2 , and P. Tizzani1

1IREA, CNR, Naples, Italy, 2Osservatorio Vesuviano, Naples, Italy, 3IMAA, CNR, Potenza, Italy, 4Dipartimento della Protezione
Civile, Rome, Italy

Abstract The causative source of the first damaging earthquake instrumentally recorded in the Island of
Ischia, occurred on 21 August 2017, has been studied through a multiparametric geophysical approach. In
order to investigate the source geometry and kinematics we exploit seismological, Global Positioning
System, and Sentinel-1 and COSMO-SkyMed differential interferometric synthetic aperture radar coseismic
measurements. Our results indicate that the retrieved solutions from the geodetic data modeling and the
seismological data are plausible; in particular, the best fit solution consists of an E-W striking, south
dipping normal fault, with its center located at a depth of 800 m. Moreover, the retrieved causative fault is
consistent with the rheological stratification of the crust in this zone. This study allows us to improve the
knowledge of the volcano-tectonic processes occurring on the Island, which is crucial for a better assessment
of the seismic risk in the area.

1. Introduction

The Ischia earthquake (IE) (Mw 3.9–Md 4.0; Imax EMS 8), occurred on 21 August 2017 (18:57 UTC), struck the
northern sector of the active volcanic Ischia Island (Southern Italy) causing two casualties, 42 injuries, and
extensive damage to the Casamicciola Terme town and its surroundings, along the northern structural rim
of Mount Epomeo (Figure 1a); it was followed by a seismic sequence of almost 20 earthquakes with signifi-
cantly lower magnitude (Figure S1). Moreover, geological coseismic effects, among which fractures and small
rock falls, have been induced over an area of ~2.5 km2 (Azzaro et al., 2017; EMERGEO Working Group, Nappi
et al., 2017).

Seismicity in volcanic areas shows that earthquakes generally have a lowmagnitude and they do not produce
serious damage (McNutt, 2005; Zobin, 2003); however, in a limited number of cases, earthquakes occurring in
volcanic areas have been associated to catastrophic effects, thus deserving great attention (Silveira et al.,
2003). This is the case of the Ischia Island where low seismic energy events can be associated to high seismic
risk. The historical seismic activity of the Ischia Island is recognized since the thirteenth century and caused
serious damage, thousands of casualties, and often landslides and surface breaks (Carlino et al., 2010).
Macroseismic observations have shown that historical earthquakes are mainly located at Casamicciola
Terme, in the northern sector of the Island. These events occurred with short recurrence times, displaying
lowmagnitude (inferred frommacroseismic data), and high epicentral intensity, up to 11° MCS, as in the case
of the 1883 earthquake (Cubellis & Luongo, 1998). In this case the magnitude (which ranges from 4.2 to 5.2)
was inferred from the empirical relationships, for volcanic areas, that correlate this parameter to the maxi-
mum intensity, the extension of the source, and the involved area (Cubellis & Luongo, 1998; Okada, 1983;
Shebalin, 1972). Macroseismic data also show that earthquakes are characterized by very shallow hypocenter
depths (1–2 km), as demonstrated by high-intensity values recorded in the epicentral area and strong
attenuation (Carlino et al., 2010). Following the 1883 earthquake, an aseismic period was observed in the
Island, but low-magnitude earthquakes have been recorded in the last 40 years in the northern part of the
Island (Figure S2).

The most significant seismic activity at Ischia appears to be mainly related to the Mount Epomeo, an upraised
structure that dominates the central part of the Island and is interpreted as a resurgent block (volcanic horst)
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Figure 1. Study area and geodetic measurements. (a) Simplified structural map superimposed on an optical image of the Ischia Island. The structural framework is
redrawn from Acocella and Funiciello (1999), where arrows display dipping; hatches on the downthrown side. The biggest red star indicates the location of the 21
August 2017 main shock, while the smaller ones indicate the seismic sequence from 21–30 August 2017; the locations of the seismic and cGPS stations are
reported as yellow points and blue triangles, respectively. (b–e) DInSAR (line of sight [LOS]) displacement maps computed by using S1 images acquired from:
(b) ascending orbits on 16–22 August 2017, (c) descending orbits on 16–22 August 2017, (d) ascending orbits on 17–23 August 2017, and (e) CSK images acquired
from descending orbits on 19–23 August 2017. The white square in panels (b-e) represents the DInSAR reference pixel. (f) Focal mechanism and the P1 and P2 fault
plane solution parameters.
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that, from at least 33 ka to about 5 ka, rose of about 800 m (Vezzoli, 1988), possibly due to the magma
pushing (Carlino, 2012). The edges of Mount Epomeo are marked by a system of subvertical faults, with
NW-SE, NE-SW, N-S, and E-W strike (Sbrana et al., 2009; Tibaldi & Vezzoli, 1998). The northern part of the block,
dislocated by roughly E-W and SW-NE faults, is the source area of the historical seismicity.

Since Roman time an inversion of the resurgence seems to be occurred at least in the northern sector of
the Island (Buchner, 1986), as also recently recorded by Global Positioning System (GPS) data, leveling
surveys, and differential interferometric synthetic aperture radar (DInSAR) measurements, showing a general
trend of slow subsidence with the maximum values of about 1 cm/year (De Martino et al., 2011; Manzo
et al., 2006).

In this study, we take advantage of the available seismological, GPS, and DInSAR measurements to investi-
gate the causative seismogenic fault of the IE main shock and to define its geometry and kinematics. In
particular, we jointly exploit three Sentinel-1 (S1) and one COSMO-SkyMed (CSK) displacement maps,
obtained from ascending and descending orbits, and the available GPS measurements to model the finite
fault in an elastic and homogeneous half-space. Subsequently, we benefit of the seismological data to
support our findings relevant to the modeled source.

Our results allow us to improve the knowledge of the volcano-tectonic processes occurring on the Island,
which is crucial for a better assessment of the seismic risk.

2. Exploited Data

In order to investigate the source responsible for the main shock of the 2017 seismic sequence that affected
the Casamicciola Terme area, we analyze the seismological data, DInSAR, and GPS measurements discussed
in the following.

2.1. DInSAR and GPS Measurements

The ground displacements caused by the earthquake have been detected through DInSAR and GPSmeasure-
ments. Regarding the DInSAR data, we generate several ascending and descending coseismic interferograms
by exploiting both S1 and CSK SAR data. Among them, we select four interferometric pairs (three from S1
data and one from CSK ones) showing better interferometric coherence characteristics. Accordingly, themax-
imum temporal baseline is of 6 days for the selected S1 interferograms (Figures 1b–1d) and 4 days for the CSK
one (Figure 1e); more detailed characteristics are reported in Figure S3. Before generating the S1 interfero-
grams, we coregister the SLC images by using the enhanced spectral diversity approach (Yague-Martinez
et al., 2016). Moreover, following the interferograms generation, we first unwrap the interferograms relevant
to the selected interferometric SAR data pairs by applying a minimum-cost flow approach (Pepe & Lanari,
2006); subsequently, we compensate for possible atmospheric phase artifacts correlated with the topogra-
phy of the area to finally retrieve the line of sight displacement maps presented in Figures 1b–1e. Note also
that all the measurements are referred to a reference pixel located at Ischia Porto.

In spite of some spatially random signals due to residual atmospheric phase delays (Hanssen, 2001), all the
generated displacement maps present a consistent range increase pattern localized in an area south
of Casamicciola Terme, independently from the orbit pass, look angle, and interferometric pair (see
Figures 1b–1e and S3). This implies that the detected displacements are mainly vertical (i.e., subsidence;
see also Figure S4) (Manzo et al., 2006). The maximum range change is of about 4 cm in line of sight. The
shape of the displacement pattern shows an E-W alignment, which is in good agreement with the aftershock
epicenter distribution (Figure 1a). The extension of the deforming area is of about 1 km2.

For what concerns the GPS measurements, six continuous GPS (cGPS) stations managed by the Istituto
Nazionale di Geofisica e Vulcanologia (INGV) Osservatorio Vesuviano are operating at Ischia Island
(Figure 1a). Their data processing has been performed by using the Bernese GPS software 5.0 (Dach et al.,
2007); a full description of the processing strategies is reported in De Martino et al. (2014). Following the
main shock seismic event, some cGPS stations experienced a coseismic deformation. These displacements
have been obtained by estimating offsets in the position time-series by considering the time interval
extending from 15 days before and 5 days after the main shock, respectively. In particular, the cGPS sta-
tion on Mount Epomeo (MEPO) shows a maximum horizontal displacement of about 1.5 cm in NNW
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direction, whereas the one located in Casamicciola Terme (OSCM) moved of about 1.0 cm toward NNE. Only
the cGPS MEPO station seems to be affected by a vertical coseismic displacement with a subsidence of
about 1.0 cm (Figures 2i–2j).

2.2. Seismological Data

The IE Mw 3.9 (Md 4.0) was recorded by the INGV seismic stations up to 40 km away from the event area and
nucleated at a depth of about 1.2 (±0.2) km on the northern rim of the Mount Epomeo block. The aftershocks
were instead detected only by the seismic stations located on the Island (Figure S1). In particular, most of

Figure 2. Source modeling results. Line of sight (LOS) projected displacement maps computed from the retrieved analytical model for the following interferograms:
(a) 16–22 August 2017 (S1), (b) 17–23 August 2017 (S1), (c) 16–22 August 2017 (S1), and (d) 19–23 August 2017 (CSK). Their corresponding residual maps are shown in
(e–h), respectively. (i) Observed (green) and predicted (white) cGPS horizontal displacements relevant to the stations OSCM, MEPO, and SERR; (j) observed (red)
and predicted (white) cGPS vertical displacements. The retrieved model parameters are also reported as well as (k) the distributed slip over a mesh of 200 × 200 m2

displayed in map view and 3D view, respectively. The red stars indicate the 2017 main event and the aftershocks.
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them were only recorded in the Casamicciola Terme Observatory site, where the IOCA and OC9 sensors are
located (see Figure 1a). All the earthquakes with, at least, four phase pickings (the main event and five after-
shocks) were located by using the NonLinLoc code (Lomax et al., 2000) and an unified 3D velocity model for
the Neapolitan volcanic areas, extending from the Ischia Island to the Apennine Mountains (D’Auria et al.,
2008). This model has been obtained through a weighted average of the local tomographic velocity models
selected from the existing literature (Improta et al., 2000; Judenherc & Zollo, 2004; Scarpa et al., 2002; Vanorio
et al., 2005; Zollo et al., 2003). By using this model we account for the velocity differences between the Campi
Flegrei caldera and the Ischia Island structures, being this area characterized by high contrast in the
elastic properties, particularly at the Campi Flegrei caldera boundaries (Tramelli et al., 2006). The most accu-
rate earthquake locations are reported in Figures 1a and S2 with the epicenters distribution showing an E-W
preferential direction. We compute the focal mechanism for the main event (Figure 1f) by using only the P
wave polarities at 11 stations (Figure S2) of the seismic network of Ischia, Campi Flegrei, and the regional
network, characterized by a clearly detectable signal, and by applying the FPFIT code (Reasenberg &
Oppenheimer, 1985). In Figure 1f we also present the achieved focal mechanism and the retrieved fault plane
parameters. We further remark that although the estimated rake indicates a transcurrent component in the
focal mechanism, the available P wave polarities do not allow to well constrain this parameter.

3. Modeling
3.1. Geodetic Modeling

In order to investigate the seismogenic source parameters we jointly invert the selected DInSAR coseismic
displacement maps and the GPS measurements. Note that the DInSAR measurements have been resampled
on a regular grid with a mesh of 100 × 100 m2. Moreover, we also apply a low-pass filter to each DInSAR dis-
placement map in order to mitigate the decorrelation effects (Franceschetti & Lanari, 1999); note also that the
SAR pixels characterized by very high decorrelation effects (i.e., with very low interferometric coherence)
have been excluded from our analysis.

Our modeling strategy follows a well-established two-step approach: a nonlinear inversion to estimate the
fault plane parameters, followed by a linear inversion to retrieve the slip distribution on the fault plane
(Atzori et al., 2009; Solaro et al., 2016). Accordingly, the displacement maps are first modeled through a fault
plane and its parameters are retrieved by using a nonlinear inversion based on the Levenberg-Marquardt
least squares approach (Marquardt, 1963). The choice of using a single planar source in the optimization pro-
cedure is conditioned by the presence of one distinctive lobe in the detected ground deformation pattern
(Figures 1b–1e). Specifically, we investigate a finite dislocation planar source in an elastic and homogeneous
half-space (Okada, 1985), for which all source parameters are set free during the inversion. We find that the
best fit solution consists of an E-W striking south dipping normal fault with its center located at a depth of
800 m; the retrieved best fit parameters are reported in Figure 2. The residual patterns (i.e., the difference
between measured and modeled displacements) and the RMSE values for each interferogram are also
reported in Figures 2b, 2d, 2f, and 2h; note that the higher residuals are associated to residual atmospheric
artifacts. In addition, we perform a statistical analysis on the retrieved fault parameters (Figure S5). The model
solution is also compared with the horizontal (Figure 2i) and the vertical (Figure 2j) GPS components high-
lighting a good agreement also for these measurements.

In order to have a more accurate estimate of the slip along the fault plane, a distributed slip pattern is com-
puted by partitioning the plane into 15 × 9 patches each of these extending for about 200 × 200 m2. Also, in
this case, we jointly invert the selected ascending and descending interferograms and GPSmeasurements. To
this aim, a linear inversion procedure has been performed by starting from the parameters of the previous
nonlinear inversion and searching for the differential slip on each patch (Atzori et al., 2008). Note also that
the fault length and width are extended to consider the border effects as negligible. We find that the causa-
tive fault is characterized by a main region with a maximum slip of about 14 cm at a depth in the 0.7–1.0 km
range, along the seismogenic plane (Figure 2k). Finally, we compute a geodetic moment (M*) of about
1.8 × 1015 Nm, corresponding to a moment magnitude of about Mw 4.1.

3.2. Seismic Waveform Analysis and Modeling

We analyze the seismic waveforms recorded by the accelerometer (Episensor ES-T) installed at the
Casamicciola Terme Observatory (IOCA), at about 1 km distance from the epicenter (Figure 1a). In
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particular, in order to investigate the coseismic permanent vertical motion, we compute the vertical
displacement waveform by exploiting the recorded acceleration. Note that retrieving static vertical
displacement from seismic waveforms is a rather delicate operation requiring careful analysis, but it can
provide robust results (Pino & Di Luccio, 2005, 2009). The main problems usually relate either to the long-
period drift introduced by the needed double integration (for accelerograms) (Boore, 2001) or to the
removal of the instrument response (Zhu, 2003). Several methods have been proposed to correct for the
above mentioned drift; here we follow the scheme proposed by Zhu (2003), removing the drift from
the displacement waveforms by using polynomial functions. The Figure 3a shows the final vertical
displacement obtained for second-, third-, and fourth-order polynomials. All the resulting waveforms show
a vertical uplift of about 0.7 cm. Note that although this value resulting from the waveform analysis is
below the resolution of the GPS vertical component, it is in a good agreement with the vertical
component of the modeled displacement retrieved from the geodetic data inversion (Figures S4c and S4d).

Figure 3. Seismic waveforms analysis and their modeling. (a) Coseismic vertical displacements retrieved from the accelera-
tion measurements recorded at the IOCA station (see Figure 1a). Each line represents the result obtained by removing a
polynomial function of the indicated order. (b) Comparison between the observed displacements (obtained from
double integration of the recorder acceleration) at IOCA and the synthetic ones computed for the focal mechanism derived
from the first motion (fm) polarities and the geodetic modeling (gm), respectively. A homogeneous half plane (m1) and
a four-layered structural model (m4) have been used. The waveforms are rotated to the vertical (Z), radial (R), and
transversal (T) components and band-pass filtered between 0.1 Hz and 2.0 Hz.
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In order to further constrain the retrieved fault parameters, we perform an additional analysis on the seismic
waveforms. More specifically, we compare the observed waveforms at IOCA with the synthetic seismograms
computed for the two source models relevant to the retrieved focal mechanism for plane P1 (Figure 1f) and
to the geodetic model (Figure 2); these seismograms are obtained by means of a reflectivity based method
(Giardini et al., 1995) with a point-source and double-couple mechanism, and considering two distinct struc-
tural models: a homogeneous half space (VP = 2.5 km/s; VS = 1.4 km/s) and a four-layered, laterally homoge-
neous structure (Figure 3b and Table S1). Note that for the geodetic model, the source is located at the fault
center, whereas for the polarity-derived mechanism the source is located at the hypocenter, being the latter
deeper than the fault center. For both models, we used the seismic moment M0 = 1.0 × 1015 Nm.

The comparative analysis between the measured and the modeled waveforms, shown in Figure 3b, indicates
that for the synthetic seismograms (referred to as synthetics) both sources provide a reasonable fit with the
recorded waveforms (Table S2). We observe that the first pulse duration, controlled by the S-P arrival time, is
in better agreement with the longer source-to-station paths, that is, with the deeper hypocentral location of
the first motion polarity source and with the longer paths of the four-layered model. This latter produces
minor oscillations in the synthetics that slightly increase the misfit. We also remark that the observed relative
maximum amplitude of the three components is more compatible with a higher rake angle (i.e., with the geo-
detic model), as evident if the misfit for each model is computed with the synthetics rescaled by equating the
maximum amplitude of the vertical component to the observed one (Table S3).

Overall, the waveform analysis points out that independently of the adopted structural model, the seismo-
genic fault responsible for the IE is characterized by (i) a E-W striking fault; (ii) a south dipping, high-angle
plane; and (iii) a rake value showing a low-to-null strike-slip component.

4. Discussions and Conclusion

The 21 August 2017 IE represents the largest seismic event affecting the Island ever observed with modern
techniques. The level of damage and its distribution (EMERGEO Working Group, Nappi et al., 2017; Gruppo di
Lavoro INGV sul terremoto dell’isola di Ischia, 2017), with respect to the magnitude, agree with the historical
observations of low magnitude-high intensity occurrence and strong attenuation (Carlino et al., 2010). The
most relevant damage, observed just in a narrow area of Casamicciola Terme, is related to the shallowness
of the source.

A multidisciplinary approach allowed us to investigate the causative source of the IE event. In particular, we
have exploited seismological data, multisensor/multiorbit DInSAR measurements, and cGPS ones (Figure 1)
to investigate the seismogenic source through analytical modeling techniques.

The joint inversion of the DInSAR and cGPS coseismic measurements allows us to estimate the fault plane
parameters and to retrieve the associated slip distribution. We find a main patch of slip (with values up to
14 cm) located at the center of the fault plane at a depth of 800 m (Figure 2). This result provides a picture
of the seismogenic mechanism of the earthquake, dominated by a normal fault mechanism where the
hanging block (located in the northern part of Mount Epomeo) moves downward. In particular, the retrieved
seismogenic fault responsible for the IE is characterized by (i) a E-W striking fault (86°); (ii) a south dipping,
high-angle plane (70°); and (iii) a rake value close to �90°. These findings are in rather good agreement with
the recorded aftershock alignment along the E-W direction and with the computed focal mechanism relevant
to the plane P1 (Figure 1f), thus allowing to resolve for the nonuniqueness of the fault plane solutions. The
only main difference between the focal plane P1 and the geodetic modeling solution is relevant to the rake
values that, for the former case, results to be �40°±15°. However, although this rake estimate indicates a
transcurrent component in the focal mechanism, its value is not well constrained by the P wave polarities
available for this earthquake. Moreover, the seismic waveforms at IOCA station show a vertical uplift of about
0.7 cm, which is in good agreement with the modeled displacements.

Two seismic waveform forwardmodeling have been also carried out by considering the focal mechanism and
the geodetic modeling results, respectively. Both models confirm that a high-angle normal fault, with low-to-
null transcurrent component, is required in order to satisfactorily reproduce the observed transient
ground motion (Figure 3). In this case the main difference with respect to the geodetic modeling results is
related to the retrieved seismic moment, which is 1.0 × 1015 Nm. The discrepancy between the geodetic
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Figure 4. Sourcemodeling results in the rheological scenario. (a) 3D prospective view of the rheological stratification of the
crust beneath Ischia Island. The grey wireframe isosurface represents the brittle/ductile transition from Castaldo et al.
(2017). The retrieved fault plane (see Figure 2k) and the distributed slip are also reported. The locations of the selected AA0

and BB0 cross sections, investigated in the following, are displayed in the upper left corner. The red stars and the green
dots indicate the location of the seismicity recorded during August 2017 and during the time interval 1999–2013,
respectively. (b) Selected cross sections shown in (a) with the contour map of the computed rheological stratification of the
crust; the retrieved fault plane is reported with the continuous green line in AA0 and the dotted one (projected) in BB0 .
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(M* = 1.8 × 1015 Nm) and the seismic moment estimations can be attributed to a number of factors such as a
possible small component of deformation aseismically accommodated. Note also that according to the clas-
sification proposed by Wassermann (2002), the frequency analysis of recorded seismic waveforms allows us
to classify the IE as shallow volcanic-tectonic event (above about 1–2 km).

We further remark that the 2017 seismic sequence occurs in the same area where the previous seismicity of
Ischia Island was located (Rovida et al., 2016) (Figures 4 and S2). The E-W distribution of the seismic sequence
spreads along the main system of faults arranged in parallel segments (Acocella & Funiciello, 1999) over an
area, whose dimension is compatible with the fault length inferred from our inversion results. The subvertical
normal fault of the earthquake with a southward dipping is in good agreement with the structural framework
of Mount Epomeo proposed in the available literature (Acocella et al., 2001; Acocella & Funiciello, 1999; Molin
et al., 2003) and with no field evidences of reverse fault systems (Marotta & De Vita, 2014). Moreover, the
bathymetric surveys performed in the surrounding region of the volcanic Island do not reveal the existence
of morphological elements that could be associated with compressional fault structures (Aiello et al., 2009).

Our study confirms that the seismicity of the northern side of the Island is associated to a local seismogenic
structure that is stressed, and periodically reactivated, by the loading of the Mount Epomeo along its maxi-
mum elevation sector (Carlino et al., 2014). In this context, the retrieved normal fault mechanism is very likely
induced by the observed long-term subsidence phase (Manzo et al., 2006), since the lithostatic load
represents the principal vertical stress. The comparison between the rheological model proposed by
Castaldo et al. (2017) and the seismicity recorded at Ischia Island clearly shows that the earthquake hypocen-
ters are at shallower depth than brittle/ductile transition (at about 2 km depth beneath Mount Epomeo)
(Figure 4a). This finding is particularly evident if we superimpose the retrieved fault model on the rheological
stratification of the area (Figure 4b). Accordingly, our results suggest that (i) the seismicity of Ischia is not
associated to magma injection and (ii) the rheology properties of the crust beneath the Ischia Island have
an influence on the ongoing volcano-tectonic processes.
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