1,074 research outputs found

    RKKY-like contributions to the magnetic anisotropy energy: 3d adatoms on Pt(111) surface

    Get PDF
    The magnetic anisotropy energy defines the energy barrier that stabilizes a magnetic moment. Utilizing density functional theory based simulations and analytical formulations, we establish that this barrier is strongly modified by long-range contributions very similar to Frieden oscillations and Rudermann-Kittel-Kasuya-Yosida interactions. Thus, oscillations are expected and observed, with different decaying factors and highly anisotropic in realistic materials, which can switch non-trivially the sign of the magnetic anisotropy energy. This behavior is general and for illustration we address transition metals adatoms, Cr, Mn, Fe and Co deposited on Pt(111) surface. We explain in particular the mechanisms leading to the strong site-dependence of the magnetic anisotropy energy observed for Fe adatoms on Pt(111) surface as revealed previously via first-principles based simulations and inelastic scanning tunneling spectroscopy (A. A. Khajetoorians et al. Phys. Rev. Lett. 111, 157204 (2013)). The same mechanisms are probably active for the site-dependence of the magnetic anisotropy energy obtained for Fe adatoms on Pd or Rh(111) surfaces and for Co adatoms on Rh(111) surface (P. Blonski et al. Phys. Rev. B 81, 104426 (2010)).Comment: published manuscript with additional figures and comment

    Quantum well states and amplified spin-dependent Friedel oscillations in thin films

    Full text link
    Electrons mediate many of the interactions between atoms in a solid. Their propagation in a material determines its thermal, electrical, optical, magnetic and transport properties. Therefore, the constant energy contours characterizing the electrons, in particular the Fermi surface, have a prime impact on the behavior of materials. If anisotropic, the contours induce strong directional dependence at the nanoscale in the Friedel oscillations surrounding impurities. Here we report on giant anisotropic charge density oscillations focused along specific directions with strong spin-filtering after scattering at an oxygen impurity embedded in the surface of a ferromagnetic thin film of Fe grown on W(001). Utilizing density functional theory, we demonstrate that by changing the thickness of the Fe films, we control quantum well states confined to two dimensions that manifest as multiple flat energy contours, impinging and tuning the strength of the induced charge oscillations which allow to detect the oxygen impurity at large distances (\approx 50nm).Comment: This paper has an explanatory supplemen

    Stripe-hexagon competition in forced pattern forming systems with broken up-down symmetry

    Full text link
    We investigate the response of two-dimensional pattern forming systems with a broken up-down symmetry, such as chemical reactions, to spatially resonant forcing and propose related experiments. The nonlinear behavior immediately above threshold is analyzed in terms of amplitude equations suggested for a 1:21:2 and 1:11:1 ratio between the wavelength of the spatial periodic forcing and the wavelength of the pattern of the respective system. Both sets of coupled amplitude equations are derived by a perturbative method from the Lengyel-Epstein model describing a chemical reaction showing Turing patterns, which gives us the opportunity to relate the generic response scenarios to a specific pattern forming system. The nonlinear competition between stripe patterns and distorted hexagons is explored and their range of existence, stability and coexistence is determined. Whereas without modulations hexagonal patterns are always preferred near onset of pattern formation, single mode solutions (stripes) are favored close to threshold for modulation amplitudes beyond some critical value. Hence distorted hexagons only occur in a finite range of the control parameter and their interval of existence shrinks to zero with increasing values of the modulation amplitude. Furthermore depending on the modulation amplitude the transition between stripes and distorted hexagons is either sub- or supercritical.Comment: 10 pages, 12 figures, submitted to Physical Review

    Estimates of the changes in tropospheric chemistry which result from human activity and their dependence on NO(x) emissions and model resolution

    Get PDF
    As a consequence of the non-linear behavior of the chemistry of the atmosphere and because of the short lifetime of nitrogen oxides (NO(x)), two-dimensional models do not give an adequate description of the production and destruction rates of NO(x) and their effects on the distributions of the concentration of ozone and hydroxyl radical. In this study, we use a three-dimensional model to evaluate the contribution of increasing NO(x) emissions from industrial activity and biomass burning to changes in the chemical composition of the troposphere. By comparing results obtained from longitudinally-uniform and longitudinally-varying emissions of NO(x), we demonstrate that the geographical representation of the NO(x) emissions is crucial in simulating tropospheric chemistry

    Self-Organized Assemblies Of Colloidal Particles Obtained From An Aligned Chromonic Liquid Crystal Dispersion

    Get PDF
    The behavior of mono-disperse colloidal particles in a chromonic liquid crystal was investigated. Poly(methyl methacrylate) spherical particles with three different functionalizations, with and without surface charges, were utilized in the nematic and columnar phases of disodium cromoglycate solutions. The nematic phase was completely aligned parallel to the glass substrates by a simple rubbing technique, and the columnar phase showed regions of similar alignment. The behavior of the colloidal particles in the chromonic liquid crystal depended critically on the functionality, with bromine functionalized particles not dispersing at all, and cationic trimethylammonium and epoxy functionalized particles dispersing well in the isotropic phase of the liquid crystal. At the transition to the nematic and especially the columnar phase, the colloidal particles were expelled into the remaining isotropic phase. Since the columnar phase grew in parallel ribbons, the colloidal particles ended up in chain-like assemblies. Such behavior opens the possibility of producing patterned assemblies of colloidal particles by taking advantage of the self-organized structure of chromonic liquid crystals

    Planar Anchoring Strength And Pitch Measurements In Achiral And Chiral Chromonic Liquid Crystals Using 90-Degree Twist Cells

    Get PDF
    Chromonic liquid crystals are formed by molecules that spontaneously assemble into anisotropic structures in water. The ordering unit is therefore a molecular assembly instead of a molecule as in thermotropic liquid crystals. Although it has been known for a long time that certain dyes, drugs, and nucleic acids form chromonic liquid crystals, only recently has enough knowledge been gained on how to control their alignment so that studies of their fundamental liquid crystal properties can be performed. In this article, a simple method for producing planar alignment of the nematic phase in chromonic liquid crystals is described, and this in turn is used to create twisted nematic structures of both achiral and chiral chromonic liquid crystals. The optics of 90-degree twist cells allows the anchoring strength to be measured in achiral systems, which for this alignment technique is quite weak, about 3 x 10(-7) J/m2 for both disodium cromoglycate and Sunset Yellow FCF. The addition of a chiral amino acid to the system causes the chiral nematic phase to form, and similar optical measurements in 90-degree twist cells produce a measurement of the intrinsic pitch of the chiral nematic phase. From these measurements, the helical twisting power for L-alanine is found to be (1.1 +/- 0.4) x 10(-2) mu m(-1) wt%(-1) for 15 wt% disodium cromoglycate

    Cardiac engraftment of genetically-selected parthenogenetic stem cell-derived cardiomyocytes

    Get PDF
    Parthenogenetic stem cells (PSCs) are a promising candidate donor for cell therapy applications. Similar to embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), PSCs exhibit self-renewing capacity and clonogenic proliferation in vitro. PSCs exhibit largely haploidentical genotype, and as such may constitute an attractive population for allogenic applications. In this study, PSCs isolated from transgenic mice carrying a cardiomyocyte-restricted reporter transgene to permit tracking of donor cells were genetically modified to carry a cardiomyocyte-restricted aminoglycoside phosphotransferase expression cassette (MHC-neor/pGK-hygror) to permit the generation of highly enriched cardiomyocyte cultures from spontaneously differentiating PSCs by simple selection with the neomycin analogue G148. Following engraftment into isogenic recipient hearts, the selected cardiomyocytes formed a functional syncytium with the host myocardium as evidenced by the presence of entrained intracellular calcium transients. These cells thus constitute a potential source of therapeutic donor cells

    Effects of business-as-usual anthropogenic emissions on air quality.

    Get PDF
    The atmospheric chemistry general circulation model EMAC has been used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy and food consumption and consequent pollution sources with the current technologies ("business as usual"). This scenario is chosen to show the effects of not implementing legislation to prevent additional climate change and growing air pollution, other than what is in place for the base year 2005, representing a pessimistic (but feasible) future. By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecisions inherent to the coarse horizontal resolution (~100 km) and simplified bottom-up emission input. To identify possible future hot spots of poor air quality, a multi pollutant index (MPI), suited for global model output, has been applied. It appears that East and South Asia and the Middle East represent such hotspots due to very high pollutant concentrations, although a general increase of MPIs is observed in all populated regions in the Northern Hemisphere. In East Asia a range of pollutant gases and fine particulate matter (PM2.5) is projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels are expected to increase strongly. The per capita MPI (PCMPI), which combines demographic and pollutants concentrations projections, shows that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. Following the business as usual scenario, it is projected that air quality for the global average citizen in 2050 would be almost comparable to that for the average citizen in the East Asia in the year 2005, which underscores the need to pursue emission reductions.JRC.H.2-Air and Climat
    corecore