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RKKY-like contributions to the magnetic anisotropy energy: 3d adatoms on Pt(111) surface
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The magnetic anisotropy energy defines the energy barrier that stabilizes a magnetic moment. Utilizing
density-functional-theory-based simulations and analytical formulations, we establish that this barrier is strongly
modified by long-range contributions very similar to Friedel oscillations and Rudermann-Kittel-Kasuya-Yosida
interactions. Thus, oscillations are expected and observed, with different decaying factors and highly anisotropic
in realistic materials, which can switch nontrivially the sign of the magnetic anisotropy energy. This behavior
is general, and for illustration we address the transition-metal adatoms, Cr, Mn, Fe, and Co deposited on a
Pt(111) surface. We explain, in particular, the mechanisms leading to the strong site dependence of the magnetic
anisotropy energy observed for Fe adatoms on a Pt(111) surface as revealed previously via first-principles-based
simulations and inelastic scanning tunneling spectroscopy [A. A. Khajetoorians et al., Phys. Rev. Lett. 111,
157204 (2013)]. The same mechanisms are probably active for the site dependence of the magnetic anisotropy
energy obtained for Fe adatoms on Pd or Rh(111) surfaces and for Co adatoms on a Rh(111) surface [P. Blonski
et al., Phys. Rev. B 81, 104426 (2010)].
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I. INTRODUCTION

As magnetic devices shrink toward atomic dimensions,
with the ultimate goal of encoding information in the smallest
possible magnetic entity, the understanding of magnetic sta-
bility down to the single-atomic limit becomes crucial. Here,
a critical ingredient is the magnetic anisotropy energy (MAE),
which provides directionality and stability to magnetization.
The higher the MAE, the more protected is the magnetic bit
against, for example, thermal fluctuations. Thus the search for
nanosystems with enhanced MAE is a very active field, giving
the perspective of stabilizing and simultaneously reducing the
size of magnetic bits.

Recently, it was demonstrated that nanostructures with
only a few atomic spins, ranging from single atoms, to
clusters on metal surfaces (see, for example, Refs. [1–10]),
to molecular magnets (e.g., Refs. [11–14]), can exhibit MAEs
that are large enough to maintain, in principle, a stable spin
orientation at low temperatures. A celebrated example is the
giant MAE (∼9 meV) discovered by Gambardella et al. [1]
for a single Co adatom on Pt(111) surface. There the right
ingredients for a large MAE are satisfied: a large magnetic
moment carried by the 3d transition element, Co, being at
the vicinity of heavy substrate atoms characterized by a large
spin-orbit interaction (SOI). Naturally, here details of the
electronic structure and hybridization effects are decisive.
Thus exchanging the Co adatom for an Fe adatom leads to
an extremely low MAE as demonstrated recently by inelastic
scanning tunneling spectroscopy and ab initio simulations
based on density functional theory (DFT) [15]. Most intriguing
in the latter work is the dramatic change in the MAE
magnitude and sign once the Fe adatom is moved from an
fcc stacking site, where the moment points out-of-plane, to
an hcp stacking site, where the moment lies in-plane. This
was assigned to the proximity effect, leading to a large spin
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polarization cloud induced by Fe in the Pt substrate, which
is notorious for its high magnetic polarizability [16,17] as
seen also for Pd [18–22]. A similar site-dependent MAE for
Fe adatoms on the (111) surfaces of Pd and Rh and for Co
on Rh(111) was noted with ab initio simulations [23]. The
physical mechanism behind such behavior has not been, to our
knowledge, identified convincingly. Even on surfaces with a
low polarizability, such as gold, the MAE follows an oscillating
behavior depending on the distance to the surface of buried
magnetic nanostructures [24–26]. Thus the polarizability is
probably not the only ingredient modifying the strength of the
MAE since Au is much less polarizable than Pt. One must
keep in mind that the polarizability of the substrate atoms is
determined by the Stoner product I · NF , with the exchange
integral I and the number of states at the Fermi level NF

(I · NF = 0.29 for Ir, 0.59 for Pt, and 0.05 for Au) [27].
The goal of our work is to demonstrate with a formal

proof that a strong contribution to the MAE can be highly
nonlocal and long-ranged and may contribute up to ±50%
of the total MAE. Strong similarities can be foreseen with
respect to Friedel [28] and Rudermann-Kittel-Kasuya-Yosida
(RKKY) [29] oscillations in terms of the impact of the nature
of the mediating electronic states, their localization in real
space, and their shape in reciprocal space (e.g., Fermi surface)
on the decay of the oscillations and their focusing (see, e.g.,
Refs. [17,30–39]). A particularity of this long-range contribu-
tion to the MAE is, as expected, its dependence on the strength
of the SOI. Taking as an illustration 3d adatoms (Cr, Mn, Fe,
and Co) deposited on a Pt(111) surface, we demonstrate that
the contribution of the substrate Pt atoms to the total MAE
oscillates and decays with their distance to the adatom.

II. METHOD

The MAE can be determined from the magnetic force the-
orem [40,41], taking the energy difference, ε⊥ − ε||, between
the band energies of the two configurations: out-of-plane (⊥)
and in-plane (||) orientations of the magnetic moment. A ref-
erence magnetic configuration is chosen, here the out-of-plane
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orientation, where the self-consistent calculations are per-
formed and the related band energy is obtained. Then the
magnetic moment is rotated in-plane and one iteration is done
in order to extract the band energy. With such a traditional
technique, one reduces the error made by taking differences
between the total energies, which are large numbers. A
positive sign of the MAE indicates an in-plane preferable
orientation of the adatom’s magnetic moment. We utilize
the full potential relativistic Korringa-Kohn-Rostoker Green
function (FP-KKR-GF) method [42,43]. The local spin density
approximation as parametrized by Vosko, Wilk, and Nusair
was used [44]. First, the electronic structure of a 22-layer
Pt slab with two additional vacuum regions (8 layers) was
calculated. The experimental lattice parameter (3.92 Å) was
considered without surface relaxations, which are negligi-
ble [45]. Then each adatom is embedded on the surface of this
slab, in real space, together with its neighboring sites, defining
a cluster of atoms, where the charge is allowed to be updated
during self-consistency. We note that the cluster still interacts
with the rest of the host surface via the Coulomb interaction.
The adatoms are allowed to relax towards the surface, and
we found qualitatively a similar behavior for the magnetic
moments and the MAE in the range of relaxation from 15%
to 25% towards the surface. As indicated in Ref. [15], Fe was
found to relax by 20% towards the surface. The same relaxed
geometry was found for Co adatoms [46]. Thus for the sake
of comparison, the four investigated adatoms were assumed
to be at the same relaxed position 20% towards the surface.
The MAE is extracted for clusters of different sizes, for which
the Green functions of the impurity-free surface are generated
with 200 × 200 k points in the two-dimensional Brillouin zone
and a maximum angular quantum number l = 3. To provide
an idea of the convergence of the MAE versus the number of k

points we address the case of an Fe adatom in contact with a Pt
substrate, where 221 Pt atoms are allowed to be perturbed by
the impurity. The MAE is found to change by about 0.002%
with respect to the one obtained for 200 × 200 k points when
the number of k points is decreased to 180 × 180 or 150 × 150.

III. RESULTS AND DISCUSSION

A. Fe adatoms, f cc versus hcp stacking sites

Figure 1 displays the MAE obtained with the band energy
differences of an Fe adatom sitting at an fcc or an hcp site on a
Pt(111) surface versus the number of Pt atoms included in the
real-space calculations. This figure is included in the Supple-
mental Material to Ref. [15]. If only the nearest-neighbor (NN)
Pt atoms to the Fe impurity are considered, in this case three
Pt atoms, the MAE yields an out-of-plane easy axis with the
same value of −2.8 meV for both binding sites. However,
considering more Pt atoms, the neighborhoods of the two
stacking sites differ, and therefore the MAE becomes strongly
dependent on the binding site and even changes sign for the
hcp site. The latter occurs when 16 Pt atoms are included in
the surrounding cluster in addition to the NN atoms. The MAE
first decreases from −2.8 to −3.3 meV upon the inclusion of
the 10 closest Pt neighboring atoms and then, surprisingly,
jumps to +0.1 meV upon the addition of the more distant 6 Pt
atoms [blue in Figs. 2(a) and 2(b)]. The latter means that these
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FIG. 1. MAE of an Fe impurity adsorbed at an fcc (square) or
an hcp (circle) site on a Pt(111) surface versus the number of Pt
atoms in the cluster. A positive MAE corresponds to an in-plane
orientation of the magnetic moment and a negative MAE corresponds
to an out-of-plane magnetic moment. (Readapted from Supplemental
Fig. 3 of Ref. [15].)

six Pt atoms, with their positive contribution (+3.4 meV) to
the MAE, play a key- in switching the preferable orientation
of the adatom’s magnetic moment. These switcher atoms are
equivalent, belong to the subsurface layer, and are equidistant
(∼0.5 nm) from the adatom. Interestingly, the switcher atoms
occur also for the fcc binding site and are located similarly to
the hcp binding site, at the subsurface layer equidistant from
the adatom. However, their number is lower than in the hcp
stacking site: three instead of six [see Figs. 2(c) and 2(d)].
Therefore, their contribution to the MAE (+1.5 meV) is about
half their contribution for the hcp binding site. This is not
sufficient to compete against the preferable orientation of the

FIG. 2. Atomic structures of Fe impurity adsorbed on an hcp site
[(a) side view and (b) top view] or an fcc site [(c) side view and (d) top
view] of a Pt(111) surface. Pt atoms (blue) are the switching atoms,
which make a large contribution to the MAE.
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FIG. 3. Convergence of the total z component of the spin moment
and orbital moment induced in Pt atoms of different cluster sizes. The
cases of Fe adatoms sitting at hcp or fcc binding sites are considered
and the z direction is perpendicular.

adatom and its NNs (MAE = −2.8 meV). Indeed, when the
switching atoms are included the MAE jumps from −2.2 meV,
obtained with a cluster containing 15 Pt atoms, to −0.7 meV.
After the addition of more substrate atoms, reaching a cluster
of ∼221 atoms, the MAE tends to +0.5 and −2.9. meV for
the hcp and fcc binding sites, respectively. The latter values
are rather converged since smaller clusters with a number of
atoms (not shown in Fig. 1) close to the largest one show a
stable MAE.

We have also examined the effect of the Pt polarization
cloud on the total spin and orbital magnetic moments.
Interestingly, the impact on the total moment is less impressive
than that on the MAE as summarized in Table I for the case of
the Fe adatom with a magnetic moment pointing out-of-plane.
When only the NN Pt atoms are included the total spin moment
reaches a value of ∼4μB , while the total orbital moment is
around 0.2μB . The inclusion of a larger number of neighboring
Pt atoms increases the total spin moment by a maximum of
∼0.4μB , while the total orbital moment reaches saturation
already with the NN atoms. This observation can be extracted
from Fig. 3, where the induced Pt total z components of the spin
and orbital moments are plotted for the case where the impurity
sits at the hcp stacking site. The z direction is perpendicular to
the substrate.

As a summary, one realizes that the contributions of the
different Pt shells to the total MAE is not uniform, oscillates
with the distance, and certainly does not correlate perfectly
with the change in the total spin moment or total orbital
moment. The latter quantities describe the polarization of the
Pt cloud. At first sight, one could ask whether Fig. 1 is the result
of numerical artifacts related to the KKR embedding scheme.
In principle, whenever a cluster is considered, the atoms sitting
at the edge of the cluster will feel the boundary conditions
more strongly than the atoms close to the Fe impurity. As

TABLE I. Total magnetic spin and orbital moments of the Fe
adatom including different sets of neighboring Pt atoms. The total spin
moment (ms) converges after 53 Pt atoms are considered, while the
total orbital moment (morb) is already saturated with nearest-neighbor
Pt atoms.

No. of Fe hcp Fe fcc

Pt atoms ms morb ms morb

3 4.11 0.22 4.03 0.23
53 4.57 0.216 4.427 0.227
221 4.59 0.21 4.42 0.212

illustrated in Fig. 4, the edge atoms are not that affected by the
boundary conditions. The spread of the plotted values gives
an idea of the impact of the cluster size on the individual Pt
magnetic moments. As an example, the spin moment of the
edge atom, located at ∼0.65 nm, in the cluster containing 34
atoms is on top of the spin moment of the same Pt atom when
the boundary conditions have been improved by extending the
size of the cluster to 220 Pt atoms. The same conclusion can
be drawn for the orbital moment, although here the values are
much smaller than the spin moments. In general, the boundary
conditions will affect slightly the values obtained for the
magnetic properties including the MAE. However, the general
oscillatory behavior shown in Fig. 1 seems to go beyond the
numerical conditions needed to extract it. The main reason is
that the Pt spin moment, for instance, has two contributions:
induced either by the magnetic adatom or by the surrounding
magnetic Pt atoms. The former makes, in general, a much
stronger contribution than the latter. Also, within the KKR
embedding scheme the atoms at the edge feel the Coulomb
interaction of the neighboring atoms beyond the cluster.

In the following the origin of the oscillatory behavior of the
MAE is discussed by realizing that the band energies, ε, can be
evaluated from − ∫ EF

−∞ dEN(E), i.e., an integration up to the
Fermi energy, EF , of the integrated density of states (IDOS),
N (E), which in turn can be extracted from the celebrated
Lloyd’s formula [47]. Indeed, if a system described by a Green
function, G, is perturbed by a potential V , the change in the
IDOS, δN(E), is given simply by − 1

π
�Tr ln(1 − V G(E)),

where the trace is taken over the site index and orbital and
spin angular momentum quantum numbers. This permits the
aforementioned decomposition of the MAE into local and
nonlocal contributions by wise evaluation of the change in
the IDOS.

B. Long-range contributions to the MAE: Formalism
and results

First, we note that once the adatom is deposited on a
substrate, it strongly perturbs the potentials of the NN Pt atoms,
i.e., three Pt atoms in total. If we consider solely the adatom
and its NN Pt atoms, the corresponding Green function, G1,
can be obtained from the Dyson equation

G1(E) = G0(E) + G0(E)V1G1(E), (1)

where G0 is the Green function of the ideal surface of Pt
without an SOI, while V1 is the perturbing potential limited
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FIG. 4. The individual Pt atomic spin moment (left) and orbital moment (right) as a function of the distance with respect to an Fe adatom
sitting at an hcp binding site. The spread of the magnetic moments for the different cluster sizes is rather small, highlighting the low impact of
the boundary conditions of KKR simulations on these magnetic properties.

to the region of the adatom and its NN and is induced by the
presence of the impurity and the SOI. Instead of the potential
V1, one can use the scattering matrix T1:

G1(E) = G0(E) + G0(E)T1(E)G0(E). (2)

From the previous Dyson equations, the local electronic
and magnetic properties of the adatom can be reasonably
described. For instance, it leads to an MAE of −2.8 meV for
the Fe adatom. To grasp the effect of the rest of the Pt atoms,
i.e., the hundreds of outer Pt atoms, on the MAE, we solve a
second Dyson equation to obtain the new Green function, G2,

G2(E) = G1(E) + G1(E)V2G2(E), (3)

where the perturbing potential, V2, describes simultaneously
the change induced by the adatom in the additionally in-
corporated 217 outer Pt atoms (V

′
2) and their SOI (V so

2 ). In
fact, V so

2 = ξ (E)L · S, with ξ (E) being the strength of the
SOI. Thus, V2 = ∑

j (V
′

2j + V so
2j ), where the sum runs over all

outer Pt atoms. In contrast to T1, V2 is limited to the rest of
the Pt atoms and is expected to be relatively small since the
perturbation decays with the distance from the adatom, which
permits the use of Taylor expansions when solving Eq. (3).

The change in the IDOS, δN(E), due to the coupling of the
adatom and its NN to the rest of the Pt substrate atoms, is then
given as − 1

π
�Tr ln(1 − V2G1(E)), which for small V2 can be

expanded up to second order:

δN (E) = 1

2π
�Tr[2V2G1(E) + V2G1(E)V2G1(E)]. (4)

We express G1 in terms of G0 as given in Eq. (2), drop terms
leading to third- and fourth-order processes (these are expected
to be much smaller than the second order-processes), and find

δN = 1

2π
�Tr[2V2G0 + 2V2G0T1G0 + V2G0V2G0], (5)

where the energy argument, E, was taken out for the sake of
simplicity. Since V2 is written in terms of non-SOI- and SOI-
dependent terms, this allows us to disentangle the previous
expression:

δN = 1

π
�Tr

∑
j

{
V

′
2jG0 + V so

2j G0

+ T1G0V
′

2jG0 + T1G0V
so

2j G0

+ 1

2

∑
j ′

(
V

′
2j + V so

2j

)
G0

(
V

′
2j ′ + V so

2j ′
)
G0

}
. (6)

In view of our interest in the band energies, which depend on
the rotation of the magnetic moment, i.e., contributing to the
MAE, not all terms in Eq. (6) are relevant. For instance, the
term of first order in V2 or G0 contains either no spin-orbit
coupling or only the linear SOI term. Therefore they vanish
when one evaluates the MAE. From the last term, only the
contribution from the scattering at V

′
2 and at V so

2 is finite.
Since these atoms are only weakly spin polarized, the latter
term is negligible as verified numerically and therefore it is
not considered in the following. The contribution to the band
energy relevant for the MAE is then given by

− 1

π
�Tr

∫ EF

−∞
dE

∑
j

{
T1G0V

′
2jG0 + T1G0V

so
2j G0

}
, (7)

which has to be evaluated at the different configuration ⊥ and
|| orientations of the magnetic moment in order to extract the
MAE.

The first term is the simplest. It is independent of the SOI
of the outer Pt atoms and just describes a renormalization
of the MAE of the small cluster consisting of the Fe atoms
and the three Pt atoms due to the scattering at the potentials
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V
′

2j of the outer Pt atoms, which does not include the SOI
of these atoms. Therefore we call this contribution the no-so
term. The second term, called the so term, is also important
and describes the double scattering at the SOI term of T1 and
the SOI potential V so

2j of the outer atoms. These two terms
might therefore be described as nonlocal, since they connect
the scattering at the SOI of the inner cluster with the scattering
at the potentials of the outer atoms. The analogy of these
nonlocal terms with the celebrated formula from Lichtenstein
et al. [48,49] for the evaluation of the magnetic exchange
interactions is appealing, and as for the magnetic interactions,
we expect these two terms to oscillate and decay with the

distance between the two regions. Instead of the magnetic part
of the potential, the scattering occurs at the SOI term, but the
mediation is made in both cases via the Green functions.

In order to clarify the importance of the nonlocal terms
in the MAE, we have therefore recalculated the anisotropy
by switching on and off the SOIs of individual outer Pt
atoms, based on Eq. (7). In this way, we demonstrate how
the relatively small so and no-so contributions of an outer
Pt atom change the MAE of a complex system containing
an Fe atom, its NN, and the preselected outer Pt atom and
show Friedel-like oscillations. For this analysis, the cluster
thus contains an Fe adatom, its three NN Pt atoms, and one
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FIG. 5. Contributions to the MAE from different shells of Pt atoms versus their distance with respect to the adatom sitting either at an fcc
or at an hcp stacking site. (a–c) The plotted values correspond to Pt atoms sitting along the direction connecting the adatom with one of the
switching Pt atoms, i.e., (θ = 125◦, φ = −60◦) for the hcp stacking site and (θ = 128◦, φ = 30◦) for the fcc stacking site. Inset: Enhancement
of the oscillations observed in nonlocal terms. While in (a) the sum of the nonlocal contributions to the MAE is plotted, in (b) and (c) the no-so
and so terms are plotted separately for the hcp and fcc sites, respectively. (d) Anisotropy of the nonlocal contribution to the MAE obtained for
two sets of angles: (θ = 125◦, φ = −60◦) compared to (θ = 150◦, φ = 80◦). The magnitude of the MAE is clearly more enhanced along the
direction passing by the switching Pt atom, i.e., the red curve.
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additional single Pt atom. That Pt atom probes the nonlocality
of the MAE following Eq. (7) by considering it along different
directions and distances away from the magnetic adatom. In
this investigation and to simplify the discussion, we do not
include the NN atoms of that particular additional Pt atom in
our cluster. Of course these boundary conditions will affect
the final values of the nonlocal contributions but the general
conclusions of this work are not affected. We perform two
steps: in step 1 an SOI is switched on within the additional Pt
atom. After removing the MAE of the Fe adatom and its three
NN Pt atoms, we obtain the sum of the two terms given in
Eq. (7). Then we proceed with step 2 and switch off the SOI,
thereby getting the no-so-term, with which one extracts the so
term to the sum in Eq. (7).

Figure 5 shows the nonlocal contributions from a single
Pt atom as a function of the distance, d, from the adatom for
hcp and fcc sites along two directions connecting the adatom
to one of the Pt switching atoms. While in Fig. 5(a) we plot
the sum of the nonlocal contributions, in Figs. 5(b) and 5(c)
these contributions are resolved into the so and no-so terms
for the hcp and fcc sites, respectively. In Figs. 5(a)–5(c), the
chosen polar and azimuthal angles (θ,φ) are (125◦, −60◦) (hcp
stacking sites) and (128◦, 30◦) (fcc stacking sites). Naturally,
here we allow for an error bar for the angles (δθ = ±3◦ and
δφ = ±8◦) since a straight line will not cross a sufficient
number of Pt atoms at reasonable distances. One clearly sees
that the sum of nonlocal terms is important outside the small
inner region, with the largest contribution emanating from the
switcher atom, which reaches a value of 0.37 meV for the Fe fcc
site and 0.73 meV for the hcp site. As explained earlier, since
there are only three switching atoms for the fcc site, instead
of six for the hcp site, the barrier presented by the MAE of
the adatom and its NNs is not overcome. When the distance
from the adatom is increased, the induced term oscillates and
even changes sign. Its magnitude, however, is not sufficient to
overcome the aforementioned barrier. These oscillations as a
function of the distance have a Friedel-like character and are
similar to those obtained for long-ranged magnetic exchange
interactions [35,48].

In Figs. 5(b) and 5(c), we note that the so term does not
behave similarly to the no-so term. These two terms can
counteract each other as for the contribution from the switcher
atom. Thus, for this particular atom the so term is dominant
and favors an in-plane orientation of the moment, in contrast
to the no-so term. For large distances both terms oscillate
nontrivially. Although the values plotted in Fig. 5 might look
small at first glance, one should not forget that these are
contributions from a single Pt atom. In the end, one has to
sum up contributions from all the surrounding Pt atoms to get
the full nonlocal part of the MAE.

These oscillating nonlocal parts of the MAE can be highly
anisotropic as demonstrated in Fig. 5(d), where two directions
are probed. The first is along the direction shown in Fig. 5(a),
which connects the Fe adatom with one switcher atom, leading
to a very large peak at 0.5 nm. The second probed direction
does not cross such switcher atoms, and interestingly the
calculated values are considerably smaller at short distances
but show similar Friedel-like oscillations at long distances.
Thus, the nonlocal MAE contribution from the outer Pt atoms
shows Friedel-like oscillations but is highly anisotropic, which

FIG. 6. Bulk Fermi surface of Pt, with the directions of probed
atoms indicated by red and blue arrows and the [111] direction by a
black arrow. The color code on the Fermi surface corresponds to the
magnitude of the Fermi velocity (red and blue corresponding to high
and low velocity, respectively).

is expected when looking at the Fermi surface of Pt presented
in Fig. 6. Indeed the Fermi surface, extracted utilizing the
scheme described in Ref. [50], is extremely anisotropic, such
that isotropic oscillations resulting from a simple spherical
Fermi surface are not expected in our particular system.

C. Case of Cr, Mn, and Co adatoms at f cc and hcp
stacking sites

For completeness, we examined the impact of the Pt
spin-polarization cloud on the MAE of Cr, Mn, and Co
adatoms. Like the Fe adatom, the Co adatom and its NNs
prefer an out-of-plane orientation of the magnetic moment
independently of the binding site (Fig. 7). The MAE found in
this case (−8.2 meV) is, however, higher than that of the Fe
adatom, making the barrier higher for an in-plane reorientation
of the magnetic moment when a large number of Pt substrate
atoms (up to 221 atoms) is included. In addition, here the
nonlocal contribution of the switching atoms to the MAE
is even smaller than for the Fe adatom. The total MAE for
the largest studied system decreases to −6.9 and −5.5 meV
for the hcp and fcc sites, respectively. We point out that
the experimental value of Gambardella et al. [1] is around
−9 meV. This large value has generated a lot of theoretical
investigations based on density functional theory. Usual simple
exchange and correlation functionals, such as the local spin
density approximation (LDA) or the generalized gradient
approximation (GGA), leads to a rather low MAE. Therefore,
correlation effects beyond the LDA or GGA were considered,
e.g., by including a correlation U as a parameter or the orbital
polarization scheme to tune the MAE and understand the
origin of its large magnitude. Our work demonstrates that
even without the invoked correlation effects, the nonlocal
contribution to the MAE, not considered up to now, can be
crucial in the case of Co as well. We predict that in the
case of the hcp stacking site the MAE reaches approximately
−7 meV.
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FIG. 7. The MAE of Co, Mn, and Cr impurities adsorbed at an
fcc (squares) or at an hcp (circles) site on a Pt(111) surface versus the
number of Pt atoms in the cluster. The convention of the sign of the
MAE is identical to that used in Fig. 1.

The case of Mn is interesting since, contrary to what has
been observed for Fe and Co, both the local and the nonlocal
contributions to the MAE from the switching Pt atom favor
an in-plane orientation of the magnetic moment. However, the
rest of the Pt atoms are decisive. With an increase in their
number, the adatom at the fcc binding site first switches to an
out-of-plane magnetic orientation and then converges to an in-
plane orientation. The Cr adatom behaves similarly to Mn, i.e.,
both the local and the nonlocal contributions to the MAE favor
an in-plane orientation of the magnetic moment, but unlike
Mn, the local term is large: +5.6 and +4.5 meV for the hcp
and fcc stacking sites, respectively. Furthermore, compared to
Mn, Fe, and Co adatoms, the switching atoms in the vicinity
of the Cr adatom contribute to the MAE differently and favor
an out-of-plane orientation of the moment. This contribution
is, however, not large enough to overcome the barrier created
by the adatom and its NNs. When the rest of the Pt atoms are
included, Cr adatoms at both binding sites prefer an in-plane
magnetic orientation.

When the chemical nature of the adatom is changed, the
nonlocal behavior of the MAE is modified. As can be realized
from Eq. (7), the scattering properties at the adatom site,
described by T1, can renormalize strongly the total MAE. T1

depends obviously on the electronic properties of the adatom
and its nearest surroundings. It is not a single number but
a matrix, and therefore the trace in Eq. (7) is taken. Thus,

besides the impact on the magnitude of the MAE, nontrivial
interference effects can occur, which affect the oscillating
behavior of the MAE.

IV. DISCUSSION AND CONCLUSIONS

To summarize, for 3d adatoms on Pt(111) we have demon-
strated the existence of long-range, RKKY-like, contributions
to the MAE mediated by the electronic states of the substrate.
Since they oscillate as a function of the distance with different
kinds of decaying factors, they affect the magnitude of the
total MAE and can even switch its sign. This depends on the
details of the electronic structure, and as for Friedel oscillations
or RKKY interactions, they can be highly anisotropic, with
the possibility of observing a focusing effect induced by
the shape of the constant-energy contours (e.g., the Fermi
surface) [17,34,35,37]. Our results go beyond the approxi-
mations assumed according to our theoretical investigations.
We expect non-negligible nonlocal contributions to the MAE
independently of the assumptions related to the exchange and
correlation functionals, geometrical relaxations, and inclusion
of a U as done in the traditional LDA + U .

The established effect is expected to occur in other
substrates with a high polarizability (e.g., Rh, W, Ir, Pd
substrates), but also when confined electronic states are present
in low-dimensional systems [e.g., surface states of Ag and
Au(111) surfaces] since the latter favor a lower decay of the
usual Friedel oscillations. We believe that this effect is active
in the recently investigated surfaces of CuN/Cu(001) [8,51]
and graphene/Rh(111) [52], where unusual behavior of the
MAEs of different types of adsorbates has been observed.
To verify experimentally the theoretical facts described in
our work, one would, for example, have to switch off/on
the spin-orbit interaction of a remote substrate Pt atom at
will. This is certainly impossible, however, we believe that the
signature of the nonlocality of the MAE could be detectable
for two magnetic adatoms on a surface, for example, two
Fe adatoms on a Pt(111) surface. We expect the MAE to
be dependent on the interadatom distance, which is expect
to be related to the nonlocal effect discussed in the text.
Thus, we expect oscillatory behavior of the MAE measurable
with state-of-the-art inelastic scanning tunneling spectroscopy,
wherein the MAE leads to a gap in the excitation spectra.
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