12,695 research outputs found

    Intrinsic Metastabilities in the Charge Configuration of a Double Quantum Dot

    Get PDF
    We report a thermally activated metastability in a GaAs double quantum dot exhibiting real-time charge switching in diamond shaped regions of the charge stability diagram. Accidental charge traps and sensor back action are excluded as the origin of the switching. We present an extension of the canonical double dot theory based on an intrinsic, thermal electron exchange process through the reservoirs, giving excellent agreement with the experiment. The electron spin is randomized by the exchange process, thus facilitating fast, gate-controlled spin initialization. At the same time, this process sets an intrinsic upper limit to the spin relaxation time.Comment: 4 pages, 5 figures (color

    GaAs Quantum Dot Thermometry Using Direct Transport and Charge Sensing

    Get PDF
    We present measurements of the electron temperature using gate defined quantum dots formed in a GaAs 2D electron gas in both direct transport and charge sensing mode. Decent agreement with the refrigerator temperature was observed over a broad range of temperatures down to 10 mK. Upon cooling nuclear demagnetization stages integrated into the sample wires below 1 mK, the device electron temperature saturates, remaining close to 10 mK. The extreme sensitivity of the thermometer to its environment as well as electronic noise complicates temperature measurements but could potentially provide further insight into the device characteristics. We discuss thermal coupling mechanisms, address possible reasons for the temperature saturation and delineate the prospects of further reducing the device electron temperature.Comment: 8 pages, 3 (color) figure

    Self-Regulation in a Web-Based Course: A Case Study

    Get PDF
    Little is known about how successful students in Web-based courses self-regulate their learning. This descriptive case study used a social cognitive model of self-regulated learning (SRL) to investigate how six graduate students used and adapted traditional SRL strategies to complete tasks and cope with challenges in a Web-based technology course; it also explored motivational and environmental influences on strategy use. Primary data sources were three transcribed interviews with each of the students over the course of the semester, a transcribed interview with the course instructor, and the students’ reflective journals. Archived course documents, including transcripts of threaded discussions and student Web pages, were secondary data sources. Content analysis of the data indicated that these students used many traditional SRL strategies, but they also adapted planning, organization, environmental structuring, help seeking, monitoring, record keeping, and self-reflection strategies in ways that were unique to the Web-based learning environment. The data also suggested that important motivational influences on SRL strategy use—self-efficacy, goal orientation, interest, and attributions—were shaped largely by student successes in managing the technical and social environment of the course. Important environmental influences on SRL strategy use included instructor support, peer support, and course design. Implications for online course instructors and designers, and suggestions for future research are offered

    Exploring Research through Design in Animal-Computer Interaction

    Get PDF
    This paper explores Research through Design (RtD) as a potential methodology for developing new interactive experiences for animals. We present an example study from an on-going project and examine whether RtD offers an appropriate framework for developing knowledge in the context of Animal-Computer Interaction, as well as considering how best to document such work. We discuss the design journey we undertook to develop interactive systems for captive elephants and the extent to which RtD has enabled us to explore concept development and documentation of research. As a result of our explorations, we propose that particular aspects of RtD can help ACI researchers gain fresh perspectives on the design of technology-enabled devices for non-human animals. We argue that these methods of working can support the investigation of particular and complex situations where no idiomatic interactions yet exist, where collaborative practice is desirable and where the designed objects themselves offer a conceptual window for future research and development

    Is Growth of Eelgrass Nitrogen Limited? A Numerical Simulation of the Effects of Light and Nitrogen on the Growth Dynamics of Zostera marina

    Get PDF
    A numerical model of nitrogen uptake and growth was developed for the temperate seagrass Zostera marina L. Goals were to evaluate the relative effects of light and nitrogen availability on nitrogen uptake and partitioning between leaf and root tissue, and to estimate nitrogen concentrations in the sedment and water column required to saturate growth. Steady-state predictions are quite robust with respect to a range of parameter values justified by available data The calculations indicated that roots are probably more important in overall nitrogen acquisition in most light and nitrogen environments encountered in situ, but may contribute less than 50 % of the total uptake in low light. The model also predicted ammonium to be a much more important source of nitrogen than nitrate. Nitrogen concentrations required to saturate growth (even for nitrate) were estimated to be at least 50 % below concentrations commonly reported in situ, an indication that nitrogen limitation of Z. marina is probably very rare in nature

    Evaluation of the Wellspring Model for Improving Nursing Home Quality

    Get PDF
    Examines how successfully the Wellspring model improved the quality of care for residents of eleven nonprofit nursing homes in Wisconsin. Looks at staff turnover, and evaluates the impact on facilities, employees, residents, and cost
    • …
    corecore