23 research outputs found

    Machine learning algorithms for efficient process optimisation of variable geometries at the example of fabric forming

    Get PDF
    Für einen optimalen Betrieb erfordern moderne Produktionssysteme eine sorgfältige Einstellung der eingesetzten Fertigungsprozesse. Physikbasierte Simulationen können die Prozessoptimierung wirksam unterstützen, jedoch sind deren Rechenzeiten oft eine erhebliche Hürde. Eine Möglichkeit, Rechenzeit einzusparen sind surrogate-gestützte Optimierungsverfahren (SBO1). Surrogates sind recheneffiziente, datengetriebene Ersatzmodelle, die den Optimierer im Suchraum leiten. Sie verbessern in der Regel die Konvergenz, erweisen sich aber bei veränderlichen Optimierungsaufgaben, etwa häufigen Bauteilanpassungen nach Kundenwunsch, als unhandlich. Um auch solche variablen Optimierungsaufgaben effizient zu lösen, untersucht die vorliegende Arbeit, wie jüngste Fortschritte im Maschinenlernen (ML) – im Speziellen bei neuronalen Netzen – bestehende SBO-Techniken ergänzen können. Dabei werden drei Hauptaspekte betrachtet: erstens, ihr Potential als klassisches Surrogate für SBO, zweitens, ihre Eignung zur effiziente Bewertung der Herstellbarkeit neuer Bauteilentwürfe und drittens, ihre Möglichkeiten zur effizienten Prozessoptimierung für variable Bauteilgeometrien. Diese Fragestellungen sind grundsätzlich technologieübergreifend anwendbar und werden in dieser Arbeit am Beispiel der Textilumformung untersucht. Der erste Teil dieser Arbeit (Kapitel 3) diskutiert die Eignung tiefer neuronaler Netze als Surrogates für SBO. Hierzu werden verschiedene Netzarchitekturen untersucht und mehrere Möglichkeiten verglichen, sie in ein SBO-Framework einzubinden. Die Ergebnisse weisen ihre Eignung für SBO nach: Für eine feste Beispielgeometrie minimieren alle Varianten erfolgreich und schneller als ein Referenzalgorithmus (genetischer Algorithmus) die Zielfunktion. Um die Herstellbarkeit variabler Bauteilgeometrien zu bewerten, untersucht Kapitel 4 anschließend, wie Geometrieinformationen in ein Prozess-Surrogate eingebracht werden können. Hierzu werden zwei ML-Ansätze verglichen, ein merkmals- und ein rasterbasierter Ansatz. Der merkmalsbasierte Ansatz scannt ein Bauteil nach einzelnen, prozessrelevanten Geometriemerkmalen, der rasterbasierte Ansatz hingegen interpretiert die Geometrie als Ganzes. Beide Ansätze können das Prozessverhalten grundsätzlich erlernen, allerdings erweist sich der rasterbasierte Ansatz als einfacher übertragbar auf neue Geometrievarianten. Die Ergebnisse zeigen zudem, dass hauptsächlich die Vielfalt und weniger die Menge der Trainingsdaten diese Übertragbarkeit bestimmt. Abschließend verbindet Kapitel 5 die Surrogate-Techniken für flexible Geometrien mit variablen Prozessparametern, um eine effiziente Prozessoptimierung für variable Bauteile zu erreichen. Hierzu interagiert ein ML-Algorithmus in einer Simulationsumgebung mit generischen Geometriebeispielen und lernt, welche Geometrie, welche Umformparameter erfordert. Nach dem Training ist der Algorithmus in der Lage, auch für nicht-generische Bauteilgeometrien brauchbare Empfehlungen auszugeben. Weiter zeigt sich, dass die Empfehlungen mit ähnlicher Geschwindigkeit wie die klassische SBO zum tatsächlichen Prozessoptimum konvergieren, jedoch kein bauteilspezifisches A-priori-Sampling nötig ist. Einmal trainiert, ist der entwickelte Ansatz damit effizienter. Insgesamt zeigt diese Arbeit, wie ML-Techniken gegenwärtige SBOMethoden erweitern und so die Prozess- und Produktoptimierung zu frühen Entwicklungszeitpunkten effizient unterstützen können. Die Ergebnisse der Untersuchungen münden in Folgefragen zur Weiterentwicklung der Methoden, etwa die Integration physikalischer Bilanzgleichungen, um die Modellprognosen physikalisch konsistenter zu machen

    Virtual Product Development Using Simulation Methods and AI

    Get PDF

    Formability Assessment of Variable Geometries Using Machine Learning - Analysis of the Influence of the Database

    Get PDF
    Surrogate modelling has proven to be an effective strategy for time-efficient analysis and optimisation of expensive functions such as manufacturing process simulations. However, most surrogate approaches generate problem-specific “one-off” models, which cannot be reused in other, even similar scenarios. Hence, variations of the problem, e.g. minor geometry changes, instantly invalidate the surrogate. Image-based machine learning (ML) techniques have been proposed as an option to train a surrogate for variable geometries. However, it is currently unclear how to construct a sufficiently diverse set of generic training geometries and what effect different databases have. This work investigates the effect of different databases on the prediction accuracy of an ML-assessment of component manufacturability. The considered use-case is textile forming (draping) of a woven fabric. Sampling plans generate different numbers of training geometries, which are in turn evaluated in draping simulations. An image-based ML-algorithm is trained on these process samples and evaluated on a set of validation geometries. Results show that the diversity of the training geometries has a greater impact on the prediction accuracy than the number of samples. The results also hint that a comparably low number of geometry samples suffices to give meaningful results. With these findings, ML-techniques are considered a promising and time-efficient tool for manufacturability assessment at early stages of part and process design

    A meta-model based approach for rapid formability estimation of continuous fibre reinforced components

    Get PDF
    Due to their high mechanical performance, continuous fibre reinforced plastics (CoFRP) become increasingly important for load bearing structures. In many cases, manufacturing CoFRPs comprises a forming process of textiles. To predict and optimise the forming behaviour of a component, numerical simulations are applied. However, for maximum part quality, both the geometry and the process parameters must match in mutual regard, which in turn requires numerous numerically expensive optimisation iterations. In both textile and metal forming, a lot of research has focused on determining optimum process parameters, whilst regarding the geometry as invariable. In this work, a meta-model based approach on component level is proposed, that provides a rapid estimation of the formability for variable geometries based on pre-sampled, physics-based draping data. Initially, a geometry recognition algorithm scans the geometry and extracts a set of doubly-curved regions with relevant geometry parameters. If the relevant parameter space is not part of an underlying data base, additional samples via Finite-Element draping simulations are drawn according to a suitable design-table for computer experiments. Time saving parallel runs of the physical simulations accelerate the data acquisition. Ultimately, a Gaussian Regression meta-model is built from the data base. The method is demonstrated on a box-shaped generic structure. The predicted results are in good agreement with physics-based draping simulations. Since evaluations of the established meta-model are numerically inexpensive, any further design exploration (e.g. robustness analysis or design optimisation) can be performed in short time. It is expected that the proposed method also offers great potential for future applications along virtual process chains: For each process step along the chain, a meta-model can be set-up to predict the impact of design variations on manufacturability and part performance. Thus, the method is considered to facilitate a lean and economic part and process design under consideration of manufacturing effects

    Physics-informed neural networks for data-free surrogate modelling and engineering optimization – An example from composite manufacturing

    Get PDF
    Engineering components require an optimization of design and manufacturing parameters to achieve maximum performance – usually involving numerous physics-based simulations. Optimizing these parameters is a resource-intensive endeavor, though, especially in high-dimensional scenarios or for complex materials like fiber reinforced plastics. Surrogate models are able to reduce the computational effort, however, data generation still proves to be resource-intensive. Additionally, their data-driven nature may lead to physically implausible results in limit cases. As a remedy, physics-informed neural networks (PINNs) include known physics into the training for enhanced surrogate reliability. This allows to cast a physically consistent, data- and mesh-free manufacturing surrogate for variable process conditions and material parameters. The paper demonstrates how PINNs can be embedded in a design-framework to enhance process understanding, to devise engineering-interpretable processing windows and to support time-efficient process optimization at the example of a thermochemical manufacturing process with fiber-reinforced composite materials. In this work, an over 500-fold speed up of the process optimization is achieved compared to conventional approaches
    corecore