

Machine Learning for Efficient Process Optimization in Textile Draping for Composite Production

ITA Reinforced! Innovation Day

26 September 2023 | Aachen, Germany

Dr.-Ing. Clemens Zimmerling

Institute of Vehicle Systems Technology – Lightweight Design **KIT**- Karlsruher Institute of Technology

Motivation

Overview

Lightweight Engineering

Lightweight potential ↔ Engineering efforts

Process simulation for engineering design

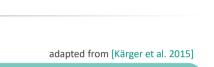
- Early assessment of manufacturability
- Reduction of expensive prototype trials
 Numerical expertise and computation efforts (iterative optimisation!)

Goal: Accelerate process optimisation

- Integration of knowledge from similar components via Machine Learning (ML)
- Joint project OptiFeed (ITA and FAST) on fabric forming

PROCESS

Infiltration


VIRTUAL

Forming

FLOW

O F

Design

СНАІМ

Curing/Cooling

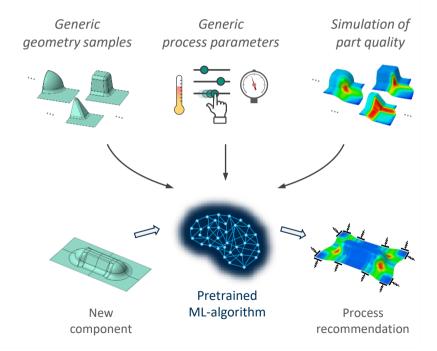
INFORMATION

Structure

Vision

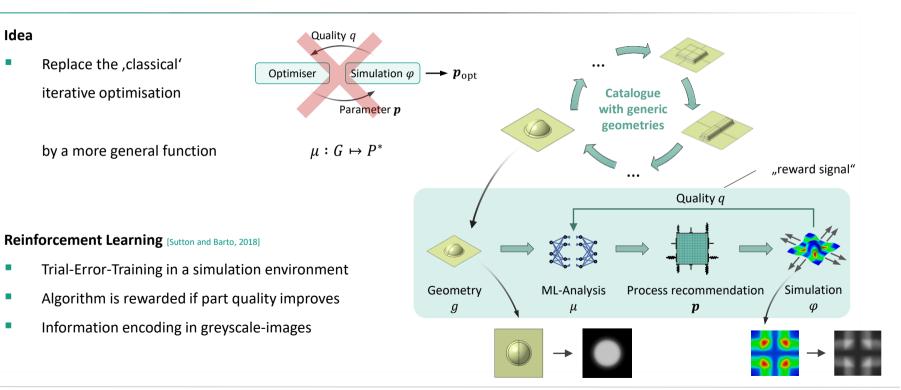
Combine simulation and ML-techniques

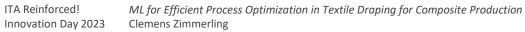
Virtual ,process experience'


- Use physics-based simulations as a ,close-to-reality' proxy of experiments
 - Generate extensive database \rightarrow with part-process-observations

- ML-algorithm extracts governing process dynamics (,training')
 - once trained, it can give \rightarrow recommendations for new geometries

Clemens Zimmerling

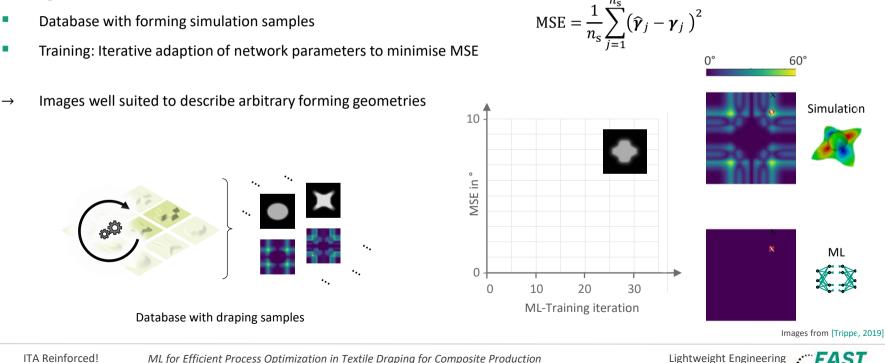

3


ITA Reinforced!

Innovation Day 2023

Process optimisation for variable geometries

Concept



Lightweight Engineering FAS Institute of Vehicle System Technology

Karlsruher Institut für Technologie

Process optimisation for variable geometries

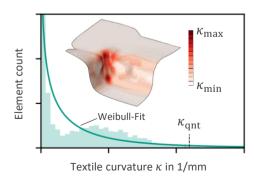
Visualisation example

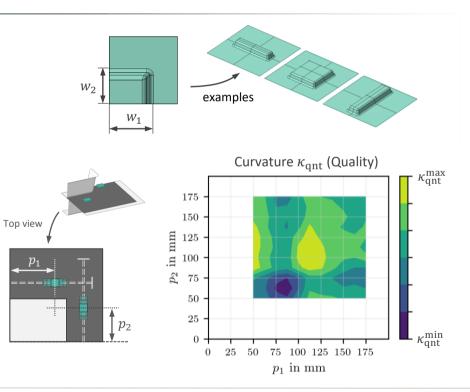
Training

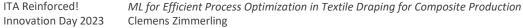
5

 \rightarrow

Lightweight Engineering Institute of Vehicle System Technology


Karlsruher Institut für Technologie

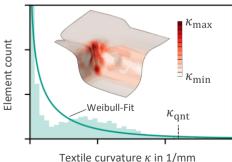

Application example

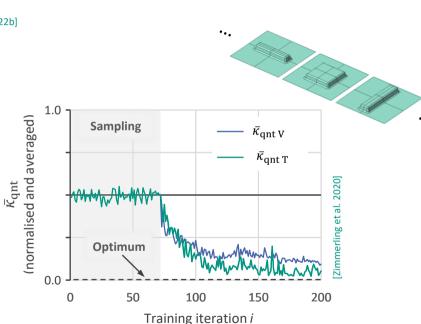

Pressure-pad assisted fabric forming [Zimmerling et al. 2020, 2022b]

- FE fabric model [Poppe et al. 2018, 2019] on geometry catalogue of cuboids
- Process manipulation by pressure pads
- Goal: Smoothest possible draw-in

 → textile curvature measures quality

Lightweight Engineering Institute of Vehicle System Technology




6

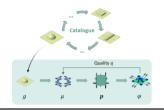
Application example | Training results

Training progress with Reinforcement Learning [Zimmerling et al. 2020, 2022b]

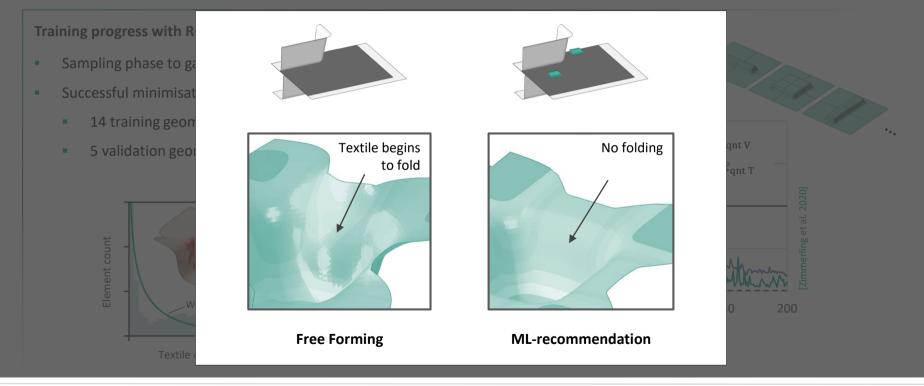
- Sampling phase to gather observations
- Successful minimisation of curvature across...
 - 14 training geometries
 - 5 validation geometries (hidden)

Catalog

Textile curvature κ in 1/mm


Karlsruher Institut für Technologie

7


ITA Reinforced!

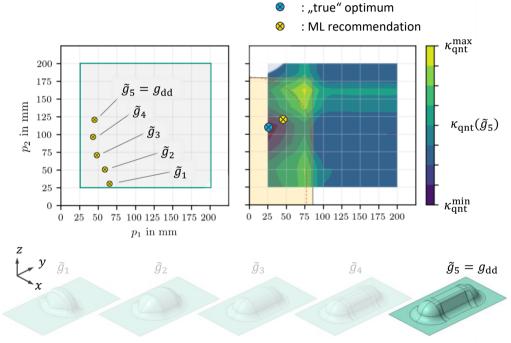
Innovation Day 2023

Application example | Training results

8

ML for Efficient Process Optimization in Textile Draping for Composite Production Clemens Zimmerling Lightweight Engineering

Application example | Training results


After training [Zimmerling et al. 2020, 2022b]

- Testing on new geometry variants
 - Doubly symmetric and mostly convex

Observation

- ML recommendations follow geometry variation
- Useful process recommendation
- Continued training refines recommendations

Successful extraction of process experience and application to new geometries

[Zimmerling et al. 2022b]

Lightweight Engineering

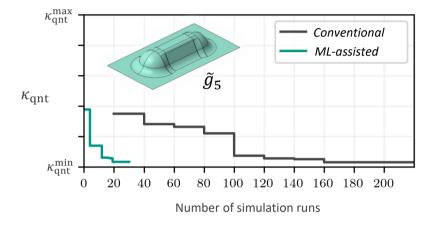
Institute of Vehicle System Technology

9

Application example | Training results and Summary

Optimisation approach comparison

- Conventional (genetic algorithm)
- ML-approach (geometry-informed)


Observation

- ML more efficient than conventional
 - $\rightarrow\,$ Utilise 'knowledge' from previous, generic samples

Summary

10

- ML-based optimisation for variable geometries
- Process dynamics can be learned from generic samples
 - Useful process recommendations after training
 - Recommendations converge to optimum
 - \rightarrow efficient optimisation of component variants possible!

Once trained, the ML-model guides the optimiser and overall speeds up the optimisation

ML for Efficient Process Optimization in Textile Draping for Composite Production **Clemens Zimmerling**

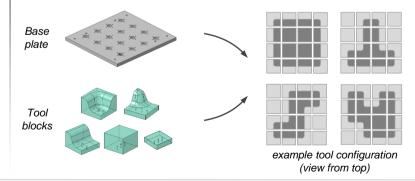
Institute of Vehicle System Technology

Lightweight Engineering

✓ Folding mitigated ✓

Trials at ITA and Schmidt & Heinzmann GmbH

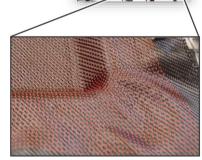
Base plate to mount tool blocks


 \rightarrow multiple geometries possible

Outlook – Short term

Experimental trials

Experimental trials


- first results hint process improvement \rightarrow
- ML-algorithm has learnt to give use process advise \rightarrow

ML-advised clamping

11

ITA Reinforced! ML for Efficient Process Optimization in Textile Draping for Composite Production **Clemens Zimmerling** Innovation Day 2023

Lightweight Engineering Institute of Vehicle System Technology

FE mesh

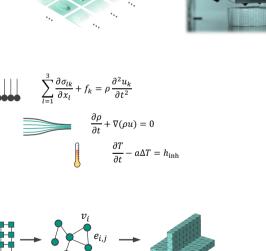
CNN

GNN

Outlook – Long term

Efficient process optimisation

Use case


- Application to 'real-world' scenarios
 - Comlex geometry, more process parameters,...
 - Other manufacturing processes

Integration of prior knowledge [Raissi et al. 2019]

Integration of known physics into training (PINNs) \rightarrow physically-consistent results ^[Würth 2022]

More advanced ML-techniques

Graph neural networks for further generalisability

Alphabetical order

Albrecht et al. 2019	F. Albrecht, C. Zimmerling, C. Poppe, L. Kärger, F. Henning: Development of a modular draping test bench for analysis of infiltrated woven fabrics in wet compression molding. Key Engineering Materials, 809, 2019
Bonte et al. 2007	M.H.A. Bonte, A.H. van den Boogaard, J. Huétink: A Metamodel Based Optimisation Algorithm for Metal Forming Processes, Advanced Methods in Material Forming, 2007
Guo et al. 2016	X. Guo,W. Li and F. Iorio: Convolutional neural networks for steady flow approximation. <i>Proceedings of the 22nd ACM</i> , 2016
ISO TR 581	ISO Technical Report 581. Weldability of metallic materials - General principles, 2005.
Kärger et al. 2015	L. Kärger, A. Bernath, F. Fritz, S. Galkin, D. magagnato, A. Oeckerath, A. Schön, F. Henning: Development and validation of a CAE chain for unidirectional fibre reinforced composite components, <i>Composite Structures</i> , 132, 2015
Pfrommer et al. 2018	J. Pfrommer, C. Zimmerling, J. Liu, F. Henning, L. Kärger, J. Beyerer: Optimisation of manufacturing process parameters using eep neural networks as surrogate models, <i>Procedia CIRP</i> , 72, 2018
Poppe et al. 2018	C. Poppe, D. Dörr, F. Henning, L. Kärger: Experimental and numerical investigation of the shear behaviour of infiltrated woven fabrics, Composites Part A, 114, 2018.
Poppe et al. 2019	C. Poppe, T. Rosenkranz, D. Dörr, L. Kärger: Comparative experimental and numerical analysis of bending behaviour of dry and low viscous infiltrated woven fabrics, <i>Composite Part A</i> , 124, 2019.
Raissi et al. 2019	M. Raissi, P. Perdikaris and G. E. Karniadakis: PINNs: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Comput. Physics, 378, 2019.

14

Alphabetical order

Sutton and Barto 2018	R.S. Sutton and A. Barto: Reinforcement learning - An introduction. <i>MIT Press</i> , Cambridge/USA and London/United Kingdom, 2 edition, 2018
Trippe 2019	D. Trippe: Untersuchung der Eignung tiefer neuronaler Netze zur zeiteffizienten Bewertung der Drapierbarkeit endlosfaserverstärkter Bauteile. Masterarbeit (Betreuer C. Zimmerling), Karlsruher Institut für Technologie - Institute für Fahrzeugsystemtechnik (KIT-FAST), Karlsruhe, 2019.
Würth 2022	T. Würth: Solving parametric PDEs with physics-informed neural networks – An example from composite manufacturing. Masterarbeit (Betreuer C. Krauß und C. Zimmerling), Karlsruher Institut für Technologie - Institut für Fahrzeugsystemtechnik (KIT-FAST), Karlsruhe, 2019.
Zimmerling et al. 2019	C. Zimmerling, D. Trippe, B. Fengler, L. Kärger: An approach for rapid prediction of textile draping results for variable composite component geometries using deep neural networks. AIP Conference Proceedings, 2113: Art. 020007, ESAFORM 2019, Vittoria-Gasteiz/Spain, 2019
Zimmerling et al. 2020	C. Zimmerling, C. Poppe, L. Kärger: Estimating optimum process parameters in textile draping of variable part geometries - A reinforcement learning approach. Procedia manufacturing, 47, ESAFORM 2020, Cottbus/Germany, 2020
Zimmerling et al. 2021	C. Zimmerling, P. Schindler, J. Seuffert, L. Kärger: Deep neural networks as surrogate models for time-efficient manufacturing process optimisation. PoPuPS of ULiège Library, DOI: 10.25518/esaform21.3882, ESAFORM 2021, Liège/Belgium, 2021
Zimmerling et al. 2022	C. Zimmerling, B. Fengler, L. Kärger: Formability Assessment of Variable Geometries using Machine Learning – Analysis of the Influence of the Database. <i>Key Engineering Materials</i> , 926, ESAFORM 2022, Braga/Portugal, 2022
Zimmerling et al. 2022b	C. Zimmerling, C. Poppe, O. Stein, L. Kärger: Optimisation of manufacturing process parameters for variable component geometries using reinforcement learning, Materials and Design, 214, 2022

