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Engineering components require an optimization of design and manufacturing parameters to achieve
maximum performance – usually involving numerous physics-based simulations. Optimizing these
parameters is a resource-intensive endeavor, though, especially in high-dimensional scenarios or for
complex materials like fiber reinforced plastics. Surrogate models are able to reduce the computational
effort, however, data generation still proves to be resource-intensive. Additionally, their data-driven nat-
ure may lead to physically implausible results in limit cases. As a remedy, physics-informed neural net-
works (PINNs) include known physics into the training for enhanced surrogate reliability. This allows to
cast a physically consistent, data- and mesh-free manufacturing surrogate for variable process conditions
and material parameters. The paper demonstrates how PINNs can be embedded in a design-framework to
enhance process understanding, to devise engineering-interpretable processing windows and to support
time-efficient process optimization at the example of a thermochemical manufacturing process with
fiber-reinforced composite materials. In this work, an over 500-fold speed up of the process optimization
is achieved compared to conventional approaches.
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1. Introduction and related work

Individualized products, shrinking lot sizes and shorter devel-
opment times demand a wide variety of rapidly-developed prod-
ucts. However, even small product adaptions imply a new
optimization of the underlying manufacturing process to ensure
a good part quality and cost-efficiency. In current practice, such
optimizations entail costly trial–error experiments, especially for
a complex manufacturing process, such as processing fiber rein-
forced plastics materials.

An optimization of product properties can be considered as the
search of manufacturing process and design parameters, which
maximize defined product goals, while satisfying product and
manufacturing constraints [1]. In order to reduce experimental
efforts, high-fidelity simulations are applied, e.g. finite element
(FE) models. They allow concentrating costly experiments on the
most promising variants, however, finding a process optimum by
iterative optimization can still be time-consuming, due to the
required large number of evaluations in the usually non-linear
and non-convex optimization landscape [2,3].

Possible relief might come through the use of surrogate-based
optimization (SBO) [3]. Surrogates are numerically efficient, data-
driven models, which guide the optimizer’s search of the parame-
ter space. Frequently used surrogate models are e.g. polynomial
response surface (PRS), radial basis function (RBF), support vector
regression (SVR), Gaussian process and neural network models
[4]. On the downside, they usually require large data sets and
can be prone to physically implausible results in limit cases.

First introduced in 2017 by Raissi et al. [5], PINNs recently got
successfully applied as a surrogate model to different engineering
tasks, such as linear elasticity and nonlinear elastoplasticity [6],
fluid dynamics [7] and a curing process of composite materials
[8]. Unlike conventional surrogate models, PINNs, as a physics-
informed deep learning method, can act like a numerical solver
and solve forward problems without labeled data [8–10]. Thereby,
the data-free surrogate model can be obtained, by solving the con-
sidered partial differential equations (PDEs) directly parameter-
ized, e.g. as a function of variable material and process
parameters [11,7]. Consequently, PINNs have the potential to com-
bine the physical consistency of classical numerical simulations
with the time-efficiency of surrogates.

Additionally, PINNs provide further advantages. If data is avail-
able, such as numerical or experimental data, the solving of the
PDEs can be accelerated [12]. In case of small model adaptions,
previous PINNs can be re-used (transfer learning) to reduce train-
ing time and computational efforts [13]. Due to the regarded phy-
sic in the training, a well-trained PINN can produce accurate
results with little data [6], unlike purely data-driven machine
learning models, which often lack robustness in sparse-data situa-
tions [14]. Furthermore, a mesh-free surrogate model implementa-
tion can be evaluated in a fraction of a second (on Intel i5 9500�at
3.00 GHz) and the challenging and problem-dependent effort of a
mesh-generation is circumvented [7]. The efficiency of PINNs even
multiplies during repetitive evaluations, e.g. during optimization
or uncertainty analysis [13]. The savings can be several orders of
magnitude compared to conventional numerical solvers. In cases
of changed optimization goals, e.g. changed material parameters,
a PINN surrogate model can be used again without the need of
another training. Overall, PINNs appear a promising option for
engineering design and manufacturing optimization.

In this work, a manufacturing optimization approach is pro-
posed that considers manufacturing process and material proper-
ties, by using PINNs as a numerical solver and data-free
surrogate model. Unlike prior work, this work not just applies
PINNs to solve physics-based PDEs but embeds them in a holistic
2

engineering framework for improved process understanding and
efficient optimization. In addition, the performance gain compared
to classical simulation-assisted optimization is quantified. The
framework is demonstrated on a two-way coupled non-linear
PDE of application relevant complexity. Additionally, the potential
of PINNs for engineering application is further outlined by simulta-
neously varying initial conditions, boundary conditions (process
parameters) and field equation (material parameters). The opti-
mization process is divided into two main steps: Firstly, a surro-
gate model is obtained by solving the parameterized PDEs with
PINNs. Secondly, the trained PINNs are used to optimize the man-
ufacturing process by variation of process and material parame-
ters. Furthermore, it is demonstrated how the influence of
process and material parameters can be conveniently analyzed
within this framework, which helps to receive physically reason-
able insights into the modeled manufacturing process. This allows
the engineer to classify and assess the quantitative optimization
results.

The surrogate modeling method is firstly evaluated on a generic
1D heat transfer problem to develop an understanding of the
method’s capability with parameterized PDEs. Then, the optimiza-
tion method is applied on a simplified manufacturing process: a
thermochemical curing process of a composite plate. Subsequently,
the trained surrogate model is used to minimize the manufacturing
costs of the plate.

The paper is organized as follows: In Section 2 the overall
methodology of the proposed optimization method is outlined.
Section 3 at first illustrates parametric PDEs and their solution
with PINNs on a generic example before modeling and optimizing
a composite manufacturing process. In Section 4 the results of the
work are summarized, discussed and concluded by an outlook to
future developments.

2. Solving parameterized PDEs with PINNS

2.1. Approximation of parameterized PDEs by surrogate models

In general, a manufactured product can be characterized by a
tuple of product properties pðnÞ, which depend on a tuple of pro-
cessing and design parameters n 2 N. Modeling the product prop-
erty function pðnÞ, described by a system of PDEs, is desirable for
several engineering tasks, like design optimization or uncertainty
quantification [13], or to gain knowledge about the production
process itself. A final product property pðnÞ usually depends on
the initial state and the evolution of state variables uðx; t; nÞ, like
plastic strains or residual stresses. Here, x denotes the spatial vec-
tor and t the time variable. In this work, underlined quantities q
denote array-like structures, while quantities in bold q are tensors.
In general, it is necessary to solve a system of coupled parameter-
ized PDEs, in order to obtain a numerical solution of the state vari-
ables uðx; t; nÞ and, as a consequence, of the product properties pðnÞ.
For an initial-boundary value problem, the system of PDEs contains
initial conditions (ICs)Iu, Dirichlet and Neumann boundary condi-
tions (BCs) Bu and generally nonlinear PDEs Du:

Duðu; x; t; nÞ ¼ 0; x 2 X; t 2 T; n 2 N

Buðu; x; t; nÞ ¼ 0; x 2 @X; t 2 T; n 2 N

Iuðu; x; t ¼ t0; nÞ ¼ 0; x 2 X; n 2 N

8><
>: ð1Þ

where X denotes the spatial problem domain, @X the boundary of
the spatial domain, T ¼ ½t0; t1� the time space and N a tuple of
parameter spaces of the parameters n.

Due to the complexity, an analytical solution of the function
uðx; t; nÞ is usually inaccessible. Conventional numerical techniques
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can be used to approximate discrete solutions of the system of
PDEs, but require substantial computational effort. A potential
remedy are data-driven surrogate models, which yield a continu-
ous approximation of the searched function uðx; t; nÞ. However,
being entirely statistical models, such function approximations
can be physically inconsistent, though. In contrast, PINNs can cre-
ate a physics-based surrogate model of the function in a single
step, by solving the PDEs parameterized, without the need of
numerical solvers [7].
2.2. Physics-informed neural networks

Traditional numerical solvers provide a solution uðx; t; n�Þ for
one distinct parameter combination n� only. In contrast, PINNs
can solve the PDEs directly, providing a parameterized solution
uðx; t; nÞ. An example architecture of such a PINN, using a fully-
connected feed-forward neural network, is depicted by Fig. 1. Like
proposed in [6], an individual neural network is used for each
searched quantity uiðx; t; nÞ of the tuple uðx; t; nÞ. It receives the
arguments x; t and n as input and yields a scalar output
~uiðx; t; n; hiÞ, depending on the weights and biases hi of the network.
The tangens hyperbolicus function tanh is used as the activation
function for all layers, except for the output layer, which activation
function is selected as one. Corresponding to the universal approx-
imation theorem, neural networks can approximate the parame-
terized solution uðx; t; nÞ for any desired accuracy, if the network
size is not restricted [15]. In order to model the solution
uðx; t; nÞ ¼ ~uðx; t; n; h�Þ with neural networks, the appropriate
weights and biases h� of all networks have to be found (network
training).

A PINN can be trained with or without labeled data. In addition
to the data loss Ldata, the total loss L of a soft-constraints PINN
approach contains a loss on the PDEs LD, a loss on the BCs LB

and a loss on the ICsLI. As a consequence of the data-free training
(without labeled data) in this work, the data loss Ldata of the total
lossL equals automatically to zero. For ND training samples on the
domain, NB training samples of the BCs and NI training samples of
the ICs, the total loss can be calculated with the following
equations:

L ¼ kDLD þ kBLB þ kILI

LS ¼ 1
NS

XNS

i

jSuð~u; xi; ti; niÞj2; S ¼ D;B;I

8><
>: ð2Þ

wherein the weights kS define the contribution of the individual
losses to the total loss and are set to one in this work. For each train-
Fig. 1. Example architecture of a ph

3

ing sample ðxi; ti; niÞ the output of the neural network ~uðxi; ti; niÞ and
its derivatives with respect to space x and time t have to be calcu-
lated and inserted into equations Suð~u; xi; ti; niÞ of the initial-
boundary problem, e.g. into the PDE Duð~u; xi; ti; niÞ for a training
sample located within the domain. The partial derivatives of the
solution ~uðxi; ti; niÞ can be calculated explicitly and numerically
exactly with automatic differentiation (AD) [7] for each training
sample. For a non-trained PINN, the tested equations
Suð~u; xi; ti; niÞ differ generally from the (analytically) exact solution
zero, resulting in a non-zero total loss L. Thus, the solution of the
system of PDEs uðx; t; nÞ ¼ ~uðx; t; n; h�Þ can be found, by finding the
weights and biases h� of the neural networks, which minimize the
total loss L:

h� ¼ argminh2HLðhÞ ð3Þ

wherein H denotes the spaces spanned by the weights and biases h
of the neural networks. In Appendix A.1 the implementation of the
PINNs and their training are described in detail.

2.3. Solution analysis

After the training, a parameterized solution uðx; t; nÞ of the con-
sidered problem is obtained. In most cases, the aim of solving a
parameterized system of PDEs is not the solution itself, but rather
the use of the solution for further analysis, e.g. a design optimiza-
tion. In such an iterative solution scenario, the architecture of the
PINNs offers additional advantages: Since the PINN-solution is
parameterized and continuous for all input variables, it can be
evaluated at any desired space x and time t for any parameter com-
bination n in a fraction of a second. Likewise, derivative-dependent
quantities can be calculated exactly and efficiently by automatic
differentiation [7].

Overall, this provides a scientific environment, where problems,
such as a manufacturing process, can be calculated quickly, accu-
rately and parameterized. This allows the inspection not just of
the solution variable u but also of change rates, gradients, Jacobian
matrices, Hessian matrices or physical variables like a flux, a
momentum and any others.

2.4. Process and design optimization

The goal of a design optimization is to adapt the product char-
acteristics pðnÞ in such a way that a particular optimization objec-
tive GðpðnÞÞ is achieved. Consequently the optimization process can
be formulated as the search of a tuple of parameters nmin, which
minimizes the optimization objective:
ysics-informed neural network.
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nmin ¼ argminn2NGðpðnÞÞ ð4Þ
The parameterized PINN-solution uðx; t; nÞ allows to compute the
product characteristics pðnÞ and the combination with optimization
algorithms, e.g. of the scipy.optimize package [16]. Owing to the
negligible evaluation time of the PINN, even iteration-intensive
optimizers converge to a solution in short time. Some optimizers
additionally benefit from the Jacobian or Hessian matrix of the pro-
duct characteristics, which is readily available through automatic
differentiation. Overall, the duration of the optimization process
can be neglected in relation to the effort of the training process.
Thus, even frequent changes of the optimization objective, e.g.
due to product adaptations, can be handled efficiently.

3. PINNs for composite process analysis and design

Section 3 investigates two example applications of PINNs to
obtain parametric solutions and explores their advantages. At first,
a generic 1D heat-transfer scenario is discussed to highlight the
difference between the non-parametric and a parametric solution
(Section 3.1). Two scenarios are considered: A non-parametric sce-
nario where the PINN solves only one specific equation, which is
then extended to a problem with four parameters in the initial
and boundary conditions. Then, the method is applied to a compos-
ite manufacturing process (Section 3.2) and used for optimization.

3.1. 1D parameterized heat transfer

3.1.1. Problem definition
In a 1D scenario the heat transfer equation is defined as [17]:

@T
@t

¼ a
@2T
@x2

; x 2 X; t 2 T: ð5Þ

Here, a denotes the thermal diffusivity, whereby X ¼ ½x0; x1� � R1

denotes the domain and T ¼ ½t0; t1� the time space.
In general, the initial condition and the Dirichlet boundary con-

ditions of the problem can be described as a function of the tuple of
Nn parameters n ¼ ðn1; n2; . . . ; nNn

Þ 2 N:

Tðx; t ¼ 0; nÞ ¼ T0ðx; nÞ; Tðx ¼ xi; t; nÞ ¼ Txi ðx ¼ xi; t; nÞ; i

¼ 0;1 ð6Þ
In the following, the problem is considered in X ¼ ½�1;1�m and
T ¼ ½0;1�s with the diffusivity defined as a ¼ 1=pm2=s.

3.1.2. Non-parametric problem
In the first example the initial and boundary conditions are

parameter-free, i.e. fixed and invariable:

Tðx; t ¼ 0Þ ¼ ðTx0 � Tx1 Þ cos p
2

x�x0
x1�x0

� �
þ Tx1 ;

Tðx ¼ x0; tÞ ¼ Tx0 ; Tðx ¼ x1; tÞ ¼ Tx1 ;
ð7Þ

whereby Tx0 ¼ 20�C and Tx1 ¼ 0�C.
The settings of the PINN network and training are listed in

Table 1. The obtained solution Tðx; tÞ is compared with a numerical
solution TFDMðx; tÞ, calculated using the finite difference method
(FDM) and evaluated for the 1D heat equation. The relative error
of the PINN solution is quantified by:

�rel ¼ Tðx; tÞ � TFDMðx; tÞ
Tx0 � Tx1

ð8Þ

Figs. 2 a) and c) show the PINN solution Tðx; tÞ and the FDM
solution TFDMðx; tÞ, respectively, as a function of x and t. In Fig. 2
b) those solutions are compared for different time steps
ti ¼ ð0:0s;0:3s;1:0sÞ and the time evolution of the solution is
shown: At the beginning, the temperature distribution in the
4

domain has the shape of a cosine function from 0 to p=2. Due to
thermal diffusion, the temperature distribution gradually
approaches the steady-state solution: a linear decrease from Tx0

to Tx1 . For all three time steps, the PINN-solution matches the
FDM-solution well (maxðj�reljÞ < 0.4%) as Fig. 2 d) shows. The max-
imum and minimum relative error of the PINN solution is located
on the initial and left boundary condition.

3.1.3. Four-parameter problem
In this section, the problem is solved for four parameters

n ¼ ðn0; n1; n2; n3Þ to see how the PINNs can handle multiple param-
eters. The parameters n enable a wide variety of initial and corre-
sponding boundary conditions:

Tðx; t ¼ 0; nÞ ¼ n2ðx� x0Þðx� x1Þðx� n3Þ þ n0 þ ðn1 � n0Þ x�x0
x1�x0

;

Tðx ¼ x0; t; nÞ ¼ n0; Tðx ¼ x1; t; nÞ ¼ n1:

ð9Þ
Thereby, the parameters n0 and n1 are considered in the space
N0 ¼ ½0;20��C; n2 in N2 ¼ ½�10;10��C=m3 and n3 in N3 ¼ ½�2;2�m.

The network and training settings of the PINN are listed in
Table 1. Once again, the results are compared to the FDM solution
described above.

The comparison of the solutions for three randomly defined
parameter combinations ni ¼ ðn0;i; n1;i; n2;i; n3;iÞ is shown at the time
steps t ¼ 0:0s; t ¼ 0:3s and t ¼ 1:0s in Fig. 3 a) to c). For each time
step and each parameter combination, the PINN results show a
good graphical agreement with the FDM results. Please note that
PINNs enable an unlimited amount of solutions evaluations within
the definition range of the parameters n. All results shown were
produced by a single PINN after a single training, while the FDM
method required a new computation for each graph.

3.2. Thermochemical curing process

Previously, the PINN surrogate models were implemented suc-
cessfully, producing accurate results in the generic example of Sec-
tion 3.1 with up to 4 parameters. In this section, the method is
transferred to a more practical problem of a thermochemical cur-
ing process.

3.2.1. Problem definition
In the following, a thermochemical non-isothermal curing pro-

cess of a carbon fiber reinforced plastic (CFRP) plate is considered,
simulating an autoclave process. The treated plate is 250mm wide
(x-direction), 4mm high (y-direction) and 800mm long (z-
direction), with a carbon fiber fleece as a reinforcement. Isotropic
and homogeneous material properties, no temperature changes
in z-direction and a constant processing pressure are assumed.
For a 2D isotropic heat transfer of a composite curing process,
the governing equation can be defined as [18]

@

@t
ðqccp;cTÞ ¼ kc

@2T
@x2

þ @2T
@y2

 !
þ ð1� cÞqmDhm _a: ð10Þ

The macroscopic composite properties s, specifically the density qc,
the specific heat capacity cp;c at constant pressure and the thermal
conductivity kc, depend on the fiber volume content (FVC) c, corre-
sponding to the rule of mixture

sc ¼ c sf þ ð1� cÞsm; s ¼ q; cp; k: ð11Þ
Constants with the index f are material properties of the carbon
fibers, whereas the index m denotes a matrix property. The last
term of the Eq. 10 describes the internal heat generation as a result

of the exothermal curing kinetics _ST ¼ ð1� cÞqmDhm _a. For the cur-
ing kinetics, the Kamal-Malkin kinetic model is used [19]:



Table 1
Neural network (top) and training (bottom) settings of the 1D heat transfer and 2D thermochemical problem.

1D heat transfer 2D thermochemical problem

Network setting Section 3.1.2 Section 3.1.3 Section 3.2.2 Section 3.2.3

Network inputs x; t x; t; n x; y; t x; y; t; n
Network outputs T T;a
Hidden layers 2 4 4 8
Neurons per hidden layer 20 20 40

Training setting Section 3.1.2 Section 3.1.3 Section 3.2.2 Section 3.2.3

Number training samples 105 107 106 (T); 2 � 106 (a)
Distribution samples 50/25/12.5 % 50/25/6.25 %

(D/IC/BC-LR) (D/IC/BC-LRTB)
Training epochs 500 500
Batch size 1000 1000
Learning rate 10�3 to 10�5 (ED) 10�3 to 10�5 (ED)

Fig. 2. Solution of the PINN for the 1D non-parametric initial and boundary conditions of Section 3.1.2 compared to a reference solution obtained by using the finite difference
method. Figure a) shows the PINN solution of the temperature Tðx; tÞ. In Figure b) is the PINN solution (continuous lines) of the temperature Tðx; t ¼ tiÞ is compared to the
corresponding reference solution (dashed lines), both evaluated at different time steps ti ¼ ð0:0s;0:3s;1:0sÞ (green, pink, respectively blue lines). Figure c) shows the reference
solution of the temperature TFDMðx; tÞ obtained by the FDM. In Figure d) the relative error �rel of the PINN solution in relation to the FDM solution is plotted.
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da
dt

¼ ðK1 þ K2amÞð1� aÞn: ð12Þ

Thereby, the reaction rate constants K1 and K2 follow the Arrhenius
identity Ki ¼ Ai expð�Ei=ðRTÞÞ, wherein Ai denotes a speed of reac-
tion constant, Ei an activation energy and R the universal gas con-
stant [19,20].

At the beginning of the process, the temperature in the whole
plate is constant, Tðx; y; t ¼ 0; nÞ ¼ T0 ¼ 20�C, and the curing has
not started, aðx; y; t ¼ 0Þ ¼ a0 ¼ 0. In the considered autoclave pro-
cess (see Fig. 4), the process temperature is increased over time up
to a holding temperature T1. A resulting time-dependent tempera-
ture at the top of the plate is assumed, described by the following
equation:
5

Tðx; y ¼ y1; t; nÞ ¼ ðT1 � T0Þ tanh t
s0

� �
þ T0: ð13Þ

The constant s0 ¼ theat=ðartanhðs0ÞÞ is chosen so that the tanh takes
the value s0 ¼ 0:99 at t ¼ theat ¼ 20s

Two channels cool the plate from underneath with a constant
heat flux of:

Qyðx; y ¼ y0; t; nÞ ¼ Q0 sin 2pðx�x0Þ
x1�x0

� p
2

� �
� s1

� �
tanh t

s0

� �
;

Qyðx; y ¼ y0; t; nÞ ¼ �kc
@Tðx;y;t;nÞ

@y

���
y¼y0

;
ð14Þ

with the constants Q0 ¼ 5000 W
m2 and s1 ¼ 3.



Fig. 3. The PINN Tðx; t; nÞ and FDM TFDMðx; t; nÞ solutions for the 1D heat transfer problem described in Section 3.1.3, which contains 4 parameters in total. Every Figure from a)
to c) shows the solution of the PINN (continuous lines) and FDM (dashed lines) for a distinct parameter combination ni ¼ ðn0;i; n1;i; n2;i; n3;iÞ at the time steps t ¼ 0:0s (green
lines), t ¼ 0:3s (pink lines) and t ¼ 1:0s (blue lines). Each parameter combination ni is randomly defined. In the title of the subplots the corresponding parameter combination
can be seen in the format ðn0;i; n1;i; n2;i; n3;iÞ½�C;� C;� C=m3;m�.

Fig. 4. Thermochemical curing process of a CFRP plate, considered in Section 3.2.

Table 2
Materials properties of the thermochemical curing process [23–28,21] in section 3.2

Property Symbol Value Unit

Thermal properties
Thermal conductivity (carbon fiber) kf 2:40e1 W/(m K)
Density (carbon fiber) qf 2:25e3 kg/m3

Specific isobaric heat capacity (carbon
fiber)

cp;f 7:08e2 J/(kg K)

Thermal conductivity (matrix) km 2:90e-1 W/(m K)
Density (matrix) qm 1:24e3 kg/m3

Specific isobaric heat capacity (matrix) cp;m 2:00e3 J/(kg K)

Properties of curing reactions

Speed of reaction constant A1 5:38e10 1/s
Speed of reaction constant A2 3:10e3 1/s
Activation energy E1 8:63e4 J/mol
Activation energy E2 8:00e4 J/mol
Reaction order m 1:02e-2 –
Reaction order n 1:15 –
Specific total reaction enthalpy Dhm 1:89e5 J/kg
Gas constant R 8:314 J/(K mol)
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Both the left and the right side are adiabatic, which can mathe-
matically be formulated as:

@Tðx; y; t; nÞ
@x

����
x¼x0

¼ @Tðx; y; t; nÞ
@x

����
x¼x1

¼ 0: ð15Þ

The problem equation is considered for
x ¼ ðx; yÞ 2 X ¼ ½x0; x1� � ½y0; y1� ¼ ½0;250�mm� ½0;4�mm and
t 2 T ¼ ½t0; t1� ¼ ½0;100�s.

3.2.2. Non-parametric problem
In the first step, the thermochemical curing problem is solved

without a parameter dependence. The maximum heating temper-
ature on the top is selected as T1 ¼ 120 �C and an FVC of
c ¼ 50%. With the value of c, the material properties of the compos-
ite material can be calculated using the Eqs. (11). The material
properties are listed in Table 2. Table 1 shows the network and
training settings of the PINNs.

The PINN-solution needs to be validated. For lack of available
analytical solution or spatially and temporally sufficiently resolved
experiments, the obtained PINN-solution is compared with a refer-
ence FEM solution. Specifically, the built-in thermal solver of the
commercial FE-package Abaqus is used to solve the heat equation
as it is a well-known and widely accepted solver. For the material
model of the curing kinetics, a validated subroutine is used. Details
on the material model and according experimental validation are
given in the references [21]. The relative error for the temperature
and the curing degree is defined as:

�rel;T ¼ Tðx;y;tÞ�TFEMðx;y;tÞ
T1�T0

;

�rel;a ¼ aðx; y; tÞ � aFEMðx; y; tÞ:
ð16Þ
6

Figs. 5 (a) and (b) depict the PINN’s solution of the temperature
field T and the curing degree, respectively, in the plate at the time
step t ¼ 20s. At this time step, the heated top of the plate has
reached approximately 99% of the heating temperature
T1 ¼ 120�C according to the boundary condition. A hot spot can
be observed in the center of the plate (cf. P1 in Fig. 5 a)), which
is induced by the heat of the curing reaction. The lower left and
right corners are relatively cold, due to the cooling heat flux of
the boundary condition in Eq. 14, which has its maximum value



Fig. 5. Solution of the PINNs for the temperature Tðx; y; tÞ and the curing degree aðx; y; tÞof the problem described in Section 3.2.2 and compared to an FEM solution. Figure a)
shows the PINN solution of the temperature distribution in the plate for the time step t ¼ 20s. The three points P1; P2 and P3 mark the locations of the temperature and curing
degree evaluations in Fig. 6 a) respectively b). In Fig. 5 c) the corresponding FEM solution is plotted, which is the reference for the relative error in e), calculated with Eq. 16.
The Figures b), d) and f) show analogously the PINNs solution, FEM solution and relative error of the curing degree in the plate at the time step t ¼ 20s.
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at the corners. Similar to the temperature distribution, the highest
curing degree is at the top and center of the plate, whereas the bot-
tom corners have the lowest values. In Figure e) and f) the relative
errors �rel;T respectively �rel;a of Eq. (16) are plotted with the refer-
ence FEM solution pictured in c) respectively d). The PINNs solve
the problem accurately, with an overall maximum relative error
of less than 0.2%.

In Fig. 6 the time evolution of the temperature and the curing
degree are plotted at the points P1; P2 and P3, which are marked
in Fig. 5 a). The PINNs solution shows a good agreement with the
FEM solution compared over time. In the temperature curve of P1

and P3, hot spots are visible at about 19s, due to an increase in tem-
perature relative to the stationary solution at the end of the process.
In Figure b) the curing degree approaches 100% in all three loca-
tions, even in the approximately coldest location of the plate P3.
3.2.3. Two-parameter problem
In this section two parameters are introduced for the problem

of Section 3.2.2. The parameter n0 replaces the heating temperature
T1, so that the problem can be evaluated for different processing
temperatures in the boundary condition (13) at the top of the plate.
The second parameter n1 is a material property, the FVC c, which
affects the thermal properties of the composite, e.g. heat capacity
and conductivity. As a result, it varies the underlying heat transfer

PDE (10) and the released curing reaction heat _ST .
The problem is investigated for the heating temperature

n0 ¼ ½60;180� �C and the FVC n1 ¼ ½25;75� %. As before, the settings
of the PINN networks and training is listed in Table 1.
7

The obtained surrogate models are used to show exemplarily,
how PINNs can help analyze the solution dependencies on process
and design parameters, to gain deeper insights into the underlying
manufacturing and design process. Some influences of the two
parameters to the temperature distribution can be recognized in
Fig. 7. Subplots g) and h) show a disparate temperature distribution
compared to the other plots: They show hot spots; the others not. A
hot spot arises, if the curing reaction heat cannot be discharged.
This can result in an uncontrollable curing and carbonization. Hot
spots can occur at any location the part except for the fixed temper-
ature at the top boundary. For a constant FVC n1 (columns), a higher
heating temperature n0 leads, as expected, to higher temperatures.
For the same heating temperature n0, lower FVCs n1 result in signif-
icantly lower minimum temperatures in the lower part of the plate,
if there are no hot spots, cf. Fig. (7) a) to f). Fig. 8 a) illustrates this
issue further and shows the relative stationary temperature in the
bottom corners at the end of the process
Trel;BL;endðn0; n1Þ ¼ ðTðx ¼ x0; y ¼ y0; t ¼ t1; n0; n1Þ � T0Þ=ðn0 � T0Þ. In
loose terms, Trel;BL;endðn0; n1Þ quantifies, which proportion of the pro-
cess temperature rise at the top is reached at the bottom. Thus, one
would expect that lower fiber volume contents - and thus lower
bottom temperatures - slow down the curing reaction and increase
curing time. The time for 99% curing in the bottom corners
t99%ðn0; n1Þ is depicted in Fig. 8 b). While the curing time behaves
as expected at lower heating temperatures, the opposite is the case
for high heating temperature n0. This contrary effect is confirmed by
the higher temperature at the bottom corners in Fig. (7) g). In the
following, we show how PINNs can be used to analyze this counter-
intuitive effect.



Fig. 6. Comparison over time of PINN and FEM solution for the problem described in Section 3.2.2. Figure a) shows the temperature time evolution and b) the curing degree
time evolution. The functions are evaluated at three different locations of the plate, which are marked in Fig. 5 a): P1 is the midpoint of the plate, P2 is the top left corner and
P3 is the lower left corner. Because of the symmetry in x-direction, the right corners show the same results as the left side and, consequently, are not plotted.

Fig. 7. Temperature distribution in the plate for the problem of Section 3.2.3 approximated by the PINNs and evaluated at the time step t ¼ 10s for different parameter
combinations. Each Figure from a) to i) shows the solution of temperature distribution for a own parameter combination ðn0; n1Þ, which values can be found in the title of the
corresponding subplot. The heating temperature n0 increments with each plot from the top to the bottom, while the FVC n1 becomes higher from the left side to the right side.
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In order to cure faster, the temperature at the coldest locations
(bottom corners) must have been higher at some time during the
cycle for low FVCs n1. Indeed, the maximum relative temperature

Trel;BL;maxðn0; n1Þ ¼ max
t2T

Tðx ¼ x0; y ¼ y0; t; n0; n1Þ � T0

n0 � T0

� �
ð17Þ

at the bottom corners during the process (cf. Fig. 8 c)) is higher for
low FVCs than for high FVCs. Presumably, arising hot spots are
responsible for the discrepancy. In the presence of hot spots, the
8

temperature in the plate is elevated locally. Thus, the maximum rel-
ative temperature

Trel;maxðn0; n1Þ ¼ max
t2T;ðx;yÞ2X

Tðx; y; t; n0; n1Þ � T0

n0 � T0

� �
ð18Þ

in the plate during the process shows a raised value for low FVCs n1
and heating temperatures of about 140�C (yellow area in Fig. 8 d)).
Without reaction heat, the maximum value would correspond to
the heating temperature n0 and, consequently, the maximum rela-
tive temperature Trel;maxðn0; n1Þ would equal to 100% (red area in



Fig. 8. Evaluation of the PINNs solution. Figure a): relative temperature Trel;BL;end at the bottom left corner at the end of the process relative to the corresponding heating
temperature n0. Figure b): time t99% for 99% curing in the bottom left corner. Figure c): maximum relative temperature Trel;BL;max at the bottom left corner. Figure d): maximum
relative temperature Trel;max in the plate. Figure e): maximum rate of temperature change _TBL;max in the bottom left corner. Figure f) maximum curing rate _aBL;max in the bottom
left corner. Figure g) maximum rate of temperature change _TS;BL;max in the bottom left corner due to curing heat. Figure h) maximum rate of temperature change _Tdiff;BL;max in
the bottom left corner due to diffusion.
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Fig. 8 d)). For a deeper analysis of the transient phenomena, the
maximum temperature change rate at the bottom corners

_TBL;maxðn0; n1Þ ¼
@Tðx; y; t; n0; n1Þ

@t

����
x¼x0 ;y¼y0 ;t¼t̂ðn0 ;n1Þ

ð19Þ

in Fig. 8 e) can be considered, wherein the time function t̂ðn0; n1Þ of
the maximum values is defined as

t
^ðn0; n1Þ ¼ argmax

t2T

@Tðx; y; t; n0; n1Þ
@t

����
x¼x0 ;y¼y0

 !
ð20Þ
9

and depicted in Fig. 8 f).
For a heating temperature of n0 ¼ 143�C (green vertical line),

the dependence of the temperature change rate on the FVC
switches sharply at an FVC of about 36.5% (green horizontal line).
The corresponding time point t̂ðn0 ¼ 143�C; n1 ¼ 0:356Þ (cf. Fig. 8
f)) is located on an edge, which divides the time function t̂ðn0; n1Þ
into an area of small time values (blue-coloured area) at the begin-
ning of the process and an area of higher time values (mint-
coloured area). To investigate this behavior, the temperature
change rate can be split, in accordance with the heat Eq. (10), into
a part related to the curing reaction (cf. Fig. 8 g))
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_TS;BL;maxðn0; n1Þ ¼
_STðx; y; t; n0; n1Þ

qccp;c

�����
x¼x0 ;y¼y0 ;t¼t̂ðn0 ;n1Þ

; ð21Þ

and a remaining diffusion change rate (cf. Fig. 8 h))

_Tdiff;BL;maxðn0; n1Þ ¼ _TBL;maxðn0; n1Þ � _TS;BL;maxðn0; n1Þ: ð22Þ
By comparing the temperature change rate (Fig. 8 e)) with its two
parts (Fig. 8 g) and h)) and with the time function t̂ðn0; n1Þ (Fig. 8
f), the parameter dependence can be divided into two areas: For
low FVCs and high temperatures, the temperature change rate is
dominated by the heat entry of the curing reactions. In contrast,
on the other side of the parameter spaces, the dependence in
Fig. 8 e) behaves like for the diffusion part of Fig. 8 h). Then, the
described sharp switch can be explained by the switch between
the areas of the dominant diffusion process respectively the domi-
nant curing reaction heat.

This supports the assumption that the arising hot spots are
responsible for the faster curing in Fig. 8 b) for low FVCs n1 and
high process temperatures n0: In this process regime, the hot spots
form because the heat diffusion is lower than the heat production.
Consequently, heat accumulates, raises locally the temperature
and initiates the curing reaction. Due to the diffusion process, the
temperature in the vicinity of the hot spot increases over time,
which in turn initiates curing in neighbouring regions. As a result,
the hot spot moves from the center of the plate to the bottom
corners.

3.2.4. Process and design optimization
Besides supporting process understanding, PINNs can also be

used for efficient process optimization. A simplified cost function
of the produced plate is considered. The total production costs of
a CFRP plate can be categorized in equipment, tools, labour, energy,
consumables and material costs [22]. Some of the costs are fixed
costs per plate, like certain labour before and after each plate or
consumables of a plate. They do not depend on the curing process
itself. Material costs of the fibers and the resin are a function of the
FVC n1, whereas the energy costs are coupled with the total energy
entry into the plate, due to the heating process on the top, during
the process duration tpr:

Q topðtpr; n0; n1Þ ¼ �z1

Z tpr

t0

Z x1

x0

kc
@Tðx; y; t; n0; n1Þ

@y

����
y¼y1

dxdt ð23Þ

for a length of the plate z1 ¼ 800mm. Some equipment and tools
costs are dependent on the curing process time tpr, because a higher
production volume per equipment can reduce the equipment costs
per plate. Because the main purpose of this section is the applica-
Fig. 9. Optimization solution of the cost function defined in Section 3.2.4 and calculated
Figure a) and b) show the cost function and the minimum curing degree amin in the part d
of Figure b) (black/gray/white lines) and the solution of the optimization (white marker
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tion of a PINN surrogate model in an optimization scenario, the
assumption of a simple cost model is applied:

Cplateðtpr; n0; n1Þ ¼ Ct tpr þ CQ Q topðtpr; n0; n1Þ þ Cn1 ;f n1

þ Cn1 ;m ð1� n1Þ þ C0; ð24Þ

including the assumed constants C0 ¼ 75€;Ct ¼ 0:5€=s;CQ ¼
200€=ðkWhÞ ¼ 5:56� 10�5€=J;Cn1 ;f ¼ 113:64€ and Cn1 ;m ¼ 11:36€,
which values follow the cost distribution of a plate in [22]. The goal
of the optimization process is to find the minimum of the cost
function:

min
tpr ;n0 ;n1

Cplateðtpr; n0; n1Þ ð25Þ

with the constraint that the minimum curing degree

aminðtpr;opt; n0;opt; n1;optÞ ¼ min
x;y2X

aðx; y; t ¼ tpr;opt; n0 ¼ n0;opt; n1

¼ n1;optÞ > 99% ð26Þ

in the part has to be higher than 99% at the end of the process tpr, to
guarantee a sufficiently cured plate.

The trust-region algorithm for constrained optimization from
[16] is used for optimization. Here, the advantage of neural net-
works, that the solution output of the network, temperature T
and curing degree a, is differentiable with respect to all inputs,
can be taken to speed up the optimization by calculating the Jaco-
bian matrix JC and Hessian matrix HC of the cost function and of the
constraint Ja and Ha w.r.t the variables tpr; n0 and n1. According to
the solution of the optimization problem, the lowest FVC
n1 ¼ 25% minimizes the cost function, as a result of the high mate-
rial costs of the fibers. In the investigated cost model, a lower cur-
ing degree is always more cost effective, because it reduces the
production time tpr and, in consequence, the heat entry Q top. This
happens because mechanical behavior is not considered in the
model and thus, the cost function tries to reduce the production
cost no matter the structural effects. In Fig. 9 a) the dependence
of the curing degree on the two other parameters n0 and tpr is plot-
ted. In Fig. 9 a) the graph show a distinct kink for 90Kn0K120 �C.
This is due to hot spot formation: their curing reaction heat
increases the temperature of the plate. Hence, less energy is
required for heat-up. Due to the constraint amin ¼ 99%, the solving
of the optimization problem, dependent on n0 and tpr, can be seen
as the search of the minimum of the cost function on the constant
curing degree curve amin ¼ 99%. In Fig. 9 a), where the constant
curing degree curves and the optimization solution are plotted into
the cost function figure, the optimization solution shows this
expected behavior. The solution is approximately located on the
with PINNs in dependence on the two parameters tpr and n0 for an FVC of n1 ¼ 25%.
ependent on the parameters tpr and n0. In Figure a) the constant curing degree curves
) are plotted into the cost function plot.
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curing degree curve amin ¼ 99%, where the cost function is
minimal.

The optimization takes 31:72min on Intel i5 9500�at 3.00 GHz,
whereby 120 function, 34 Jacobian and 34 Hessian matrix evalua-
tions of the cost function in total are necessary. The mean simula-
tion time of an FEM simulation is 2:43h on the same device, which
is performed for the four parameter combinations of the extreme
values of n0 and n1 and for the midpoint of the parameter space
ðn0; n1Þ ¼ ð120�C;50%Þ. In consequence, 120 solution evaluations
for an iterative optimization would take 291:6h on average with
the FEM –more than 500 times slower than the PINN optimization,
without taking into account the additional necessary calculation
time for the Jacobian and Hessian matrices. Small cost function
adaptions would require another time-intensive iterative opti-
mization with the FEM, while the PINN model can be reused.
Thereby, the mean of the relative error (Eq. 16) of the PINN solu-
tion evaluated at the 5678 FEM nodes at 251 equidistant time steps
amounts to less than 0:16% for the temperature and 0:14% for the
curing degree.
4. Conclusions

This work presents a manufacturing process optimization in
dependence on process and material properties using data-free
surrogate models of physics-informed neural networks (PINNs).
At the beginning, the surrogate modeling of PINNs is demonstrated
by solving the parameterized PDEs of a 1D heat transfer problem
with up to four parameters. In a second example of a more com-
plex thermochemical curing process of a composite plate, the sur-
rogate model approach is applied in a cost optimization process of
the cured plate in dependence on one process and one design
parameter. Additionally, the solution of the thermochemical man-
ufacturing process is analyzed with respect to the parameters,
demonstrating how PINN surrogate models can support scientific
investigations of manufacturing and design processes.

The solution of the PINNs for the 1D in-stationary heat transfer
problem as well as the thermochemical curing process are in good
agreement with the FDM and FEM computations. Furthermore, by
appending parameters to the input of PINNs, surrogate models are
trained without labeled data. The surrogate models of the 1D prob-
lem are able to produce accurate results in the tested scenarios for
a wide range of different initial and boundary conditions, defined
by four parameters. In the in-stationary 2D case, the surrogate
models produce accurate results for widely varied heating temper-
atures and fiber volume contents.

The curing process is analyzed in dependence on those two
parameters, supported by the PINN surrogate models. Automatic
differentiation is applied on the surrogate model to determine
derivatives, specific parts of the PDE and other quantities, helping
to understand the influence of the parameters on the manufactur-
ing process. It is described, how the heating temperature of the
process and the fiber volume content of the composite influence
the occurrence of hot spots and the temperature distribution in
the considered curing process.

The surrogate model is integrated in an iterative optimizer to
find the minimum plate manufacturing cost, corresponding to a
simple cost model and under the constraint that a curing degree
of more then 99% has to be achieved in the whole plate. The opti-
mum is calculated rapidly by the optimizer, due to the fast evalu-
ations of the PINNs surrogate model. The optimal solution is
predicted accurately, since it is indeed located in the area of low
plate costs.

Overall, the results of this work show that PINNs are a promis-
ing option for efficient product developments. However, further
development is necessary for application to real-world develop-
11
ments. These fall into three categories: Firstly, inclusion of addi-
tional process parameters in order to consider more complex
manufacturing scenarios or introduce geometry parameters to
support part design. One example application of high relevance
for design could be a stiffening rib of variable dimensions (e.g., wall
thickness, depth, draft angle). A PINN-based surrogate could then
allow to optimize the rib-design in short time given different mate-
rial properties and processes conditions. Secondly, improvement of
model reusability e.g. by means of transfer learning. Thirdly,
increase training efficiency to combat shortcoming of PINNs, e.g.
adequately resolving of high-frequency solution components.
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Appendix A

A.1. Neural network and training settings

In Table 1 the neural network and training settings of the PINNs
results in Section 3 are listed. In this work, an Adam optimizer with
a mini-batch sampling is used to train the PINNs, which is a com-
mon approach in the PINNs literature [29]. The PINNs are imple-
mented with the SciANN library, using Keras and TensorFlow
backends [30]. Additionally, a dimensionless approach is applied
for the PINNs analogously to the implementation in [10], due to
its superiority regarding robustness and numerical stability. How-
ever, for readability, the examples in this work are described with
dimensioned variables. In the training, a training sample contains
one value for each neural network input. The distribution of train-
ing samples defines, how many of the training samples are located
on the domain respectively the individual boundaries. E.g. for a dis-
tribution (D/IC/BC-LRTB) of 50=25=12:5 %, the training samples are
located randomly to 50% on the domain (D), to 25% on the initial
condition (IC) and to 6.25% each on the left, right, top and bottom
boundary condition (BC-LRTB). The learning rate of the training is
exponentially decreased (ED).

In the thermochemical curing process of Section 3.2, a sequen-
tial training algorithm is implemented to train the temperature
and curing degree PINN, like proposed in [8]. The algorithm starts
with the training of the temperature by holding the curing degree
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constant zero in the heat equation. Then, the gained PINN solution
of the temperature is fixed to train the curing degree a network.
Subsequently, the training of the individual networks alternates
for four additional rounds. The training settings in Table 1 of the
2D thermochemical problem refer to the training of one individual
training of the temperature respectively curing degree PINN.
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